ABSTRACT
Background
The development of a pelvic wound infection in the presence of hardware after open
reduction and internal fixation presents a clinical dilemma and there is little literature
to aid in decision-making. The purpose of this study was to describe the possibility
of debridement, antibiotic pearls and retention of the implant (DAPRI) procedure to
eradicate the infection.
Methods
Tumor-like debridement, antibiotic pearls and retention of the implant (DAPRI) aimed
to remove the biofilm allowing a higher and prolonged local antibiotic concentration
by using calcium sulfate antibiotic-added beads. Wound status, radiological signs
of bone healing, gait and functional activity of the patient were evaluated.
Results
Seven patients underwent this technique. The mean follow up time was nine months (range:
6 -16 months). Complete wound healing was achieved in all the patients with no major
complications. Average time of bony union was 4.3 months (range: 3-6 months) with
no need for implant removal.
Conclusion
The DAPRI technique might represent a safe and more conservative treatment for management
of early fracture-related infections (FRI) of the pelvis and acetabulum.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to InjuryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Diagnosis and management of pelvic fractures.Bull NYU Hosp Jt Dis. 2010; 68: 281-291
- Pelvic ring disruptions: Treatment modalities and analysis of outcomes.Int Orthop. 2009; 33: 329-338https://doi.org/10.1007/s00264-008-0555-6
- Deep infection following reconstruction of pelvic fractures: prevalence, characteristics, and predisposing risk factors.Eur J Trauma Emerg Surg. 2021; https://doi.org/10.1007/s00068-021-01618-y
Tschoeke SK, Ertel W, Franklin CB. Immunoparalysis after multiple trauma 2007:1346–57. https://doi.org/10.1016/j.injury.2007.08.041.
- Obesity, leukocytosis, embolization, and injury severity increase the risk for deep postoperative wound infection after pelvic and acetabular surgery.J Orthop Trauma. 2013; 27: 6-10https://doi.org/10.1097/BOT.0b013e31825cf382
- Postoperative surgical site infection following acetabular fracture fixation.Injury. 2010; 41: 396-399https://doi.org/10.1016/j.injury.2009.11.005
- Insights into treatment and outcome of fracture-related infection: a systematic literature review.Arch Orthop Trauma Surg. 2019; 139: 61-72https://doi.org/10.1007/s00402-018-3048-0
- Coating the plate with antibiotic cement to treat early infection after fracture fixation with retention of the implants: A technical note.BMC Musculoskelet Disord. 2018; 19: 1-6https://doi.org/10.1186/s12891-018-2285-2
- Maintenance of Hardware After Early Postoperative Infection Following Fracture Internal Fixation.J Bone Jt Surg-Am Vol. 2010; 92: 823-828https://doi.org/10.2106/JBJS.I.00470
- Acute infections after fracture repair: Management with hardware in place.Clin Orthop. 2008; 466: 466-472https://doi.org/10.1007/s11999-007-0053-y
- Diagnosis and treatment of infections associated with fracture-fixation devices.Injury. 2006; 37: 59-66https://doi.org/10.1016/j.injury.2006.04.010
- Infection after Fracture Fixation.EFORT Open Rev. 2019; 4: 145-152https://doi.org/10.1302/2058-5241.4.180093
- Fracture-related infection: A consensus on definition from an international expert group.Injury. 2018; 49: 505-510https://doi.org/10.1016/j.injury.2017.08.040
- Debridement, antibiotic pearls, and retention of the implant (DAPRI): A modified technique for implant retention in total knee arthroplasty PJI treatment.J Orthop Surg. 2019; 27: 1-6https://doi.org/10.1177/2309499019874413
- Debridement, antibiotic pearls, and retention of the implant in the treatment of infected total hip arthroplasty.HIP Int. 2020; 30: 34-41https://doi.org/10.1177/1120700020929314
- Gram-negative prosthetic joint infection treated with debridement, prosthesis retention and antibiotic regimens including a fluoroquinolone.Clin Microbiol Infect. 2011; 17: 862-867https://doi.org/10.1111/j.1469-0691.2010.03361.x
- Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection.J Orthop Trauma. 2020; 34: 18-29https://doi.org/10.1097/BOT.0000000000001615
- General treatment principles for fracture-related infection: recommendations from an international expert group.Arch Orthop Trauma Surg. 2020; 140: 1013-1027https://doi.org/10.1007/s00402-019-03287-4
- The Chitranjan Ranawat Award: Should prophylactic antibiotics be withheld before revision surgery to obtain appropriate cultures?.Clin Orthop. 2014; 472: 52-56https://doi.org/10.1007/s11999-013-3016-5
- Does Preoperative Antimicrobial Prophylaxis Influence the Diagnostic Potential of Periprosthetic Tissues in Hip or Knee Infections?.Clin Orthop. 2016; 474: 258-264https://doi.org/10.1007/s11999-015-4486-4
- Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors: QUANTIFYING IMPLANT BIOFILM IN MICE.J Orthop Res. 2015; 33: 1311-1319https://doi.org/10.1002/jor.22907
- Debridement and implant retention in the management of hip periprosthetic joint infection: outcomes following guided and rapid treatment at a single centre.Bone Jt J. 2017; 99-B: 330-336https://doi.org/10.1302/0301-620X.99B3.BJJ-2016-0609.R1
- Outcome Following Debridement, Antibiotics, and Implant Retention in Hip Periprosthetic Joint Infection—An 18-Year Experience.J Arthroplasty. 2017; 32: 2248-2255https://doi.org/10.1016/j.arth.2017.02.066
- Two-Stage Debridement With Prosthesis Retention for Acute Periprosthetic Joint Infections.J Arthroplasty. 2019; 34: 1207-1213https://doi.org/10.1016/j.arth.2019.02.013
- Outcome and risk factors for recurrence of early onset fracture-related infections treated with debridement, antibiotics and implant retention: Results of a large retrospective multicentre cohort study.Injury. 2022; 53: 3930-3937https://doi.org/10.1016/j.injury.2022.10.017
- Chlorhexidine Antiseptic Irrigation Eradicates Staphylococcus epidermidis From Biofilm: An in vitro study.Clin Orthop. 2018; 476: 648-653https://doi.org/10.1007/s11999.0000000000000052
- Antibiotic-loaded bone cement and periprosthetic joint infection.J Long Term Eff Med Implants. 2014; 24: 89-97https://doi.org/10.1615/jlongtermeffmedimplants.2013010238
- Local Release of Antibiotics for Surgical Site Infection Management Using High-Purity Calcium Sulfate: An In Vitro Elution Study.Surg Infect. 2015; 16: 54-61https://doi.org/10.1089/sur.2013.162
- Elution profiles of tobramycin and vancomycin from high-purity calcium sulphate beads incubated in a range of simulated body fluids.J Biomater Appl. 2016; 31: 357-365https://doi.org/10.1177/0885328216663392
- Antibiotic loaded calcium sulfate bead and pulse lavage eradicates biofilms on metal implant materials in vitro.J Orthop Res. 2018; 36: 2349-2354https://doi.org/10.1002/jor.23903
- Dissolvable Antibiotic Beads in Treatment of Periprosthetic Joint Infection and Revision Arthroplasty - The Use of Synthetic Pure Calcium Sulfate (Stimulan®) Impregnated with Vancomycin & Tobramycin.Reconstr Rev. 2013; 3https://doi.org/10.15438/rr.v3i1.27
Article info
Publication history
Accepted:
January 22,
2023
Publication stage
In Press Journal Pre-ProofFootnotes
Level of evidence: 4
Identification
Copyright
© 2023 Elsevier Ltd. All rights reserved.