Advertisement

A cadaveric biomechanical evaluation of anterior posterior compression II injuries

Published:January 02, 2023DOI:https://doi.org/10.1016/j.injury.2022.12.033

      Highlights

      • The interosseous and posterior sacroiliac ligaments provide the majority of stability of the sacroiliac joint.
      • Injuries with loss of posterior sacroiliac and interosseous ligament support will likely benefit most from surgical stabilization.

      Abstract

      Purpose

      Pelvic fractures are associated with high morbidity and often require surgical intervention. An Anterior Posterior Compression (APC) II injury consists of disruption at the pubic symphysis and anterior sacroiliac joint. Studies investigating specific ligamentous contributions would aid in development of novel fixation techniques. The objective of this study is to determine the level of pelvic destabilization from progressive soft tissue disruptions associated with APC II injuries.

      Methods

      Six fresh-frozen cadaveric pelvises were dissected of soft tissues, preserving joint capsules and ligaments. Each pelvis was secured in a double-leg stance and joint motion was tracked with the specimens cyclically loaded to 60% body weight. Each specimen was measured in the intact state and again following stepwise destabilization to an APC II injury model (PS: sectioned pubic symphysis, IPS JOINT: PS + ipsilateral anterior sacroiliac, sacrotuberous, sacrospinous ligaments sectioned, IPS LIGS: IPS JOINT + ipsilateral interosseous ligaments sectioned, IPS JOINT+CONT ASI: IPS LIGS + contralateral anterior sacroiliac ligament disruption).

      Results

      Compared to the intact state, there was a statistically significant increase in movement in the IPS JOINT (ipsilateral 177%, p<0.001; contralateral 46%, p<0.005) and IPS JOINT+CONT ASI (ipsilateral 184%, p<0.002; and contralateral 62%, p<0.002) states bilaterally. No significant change was demonstrated in the PS or IPS LIGS state.

      Conclusion

      Disruption of ipsilateral ligamentous structures destabilized both sacroiliac joints. The interosseous and posterior sacroiliac ligaments provide the majority of stability of the sacroiliac joint and will likely benefit most from surgical stabilization.

      Level of Evidence

      mechanism-based reasoning.

      Keywords

      Abbreviations:

      APC (Anterior Poster Compression), PS (Pubic Symphysis), PSI (Posterior Sacroiliac), ASIL (Anterior Sacroiliac Ligament), SIJ (Sacroiliac Joint), LC (Lateral Compression), ISL (Interosseous Ligament), IL (Iliolumbar Ligament), SS (Sacrospinous Ligament), ST (Sacrotuberous Ligament), ROM (Range of Motion)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balogh Z.
        • King K.L.
        • Mackay P.
        • McDougall D.
        • Mackenzie S.
        • Evans J.A.
        • et al.
        The epidemiology of pelvic ring fractures: a population-based study.
        J Trauma. 2007; 63 (discussion 72-3): 1066-1073
        • Halawi M.J.
        Pelvic ring injuries: emergency assessment and management.
        J Clin Orthop Trauma. 2015; 6: 252-258
        • Giannoudis P.V.
        • Tzioupis C.C.
        • Pape H.C.
        • Roberts C.S.
        Percutaneous fixation of the pelvic ring: an update.
        J Bone Joint Surg Br. 2007; 89: 145-154
        • Schweitzer D.
        • Zylberberg A.
        • Cordova M.
        • Gonzalez J.
        Closed reduction and iliosacral percutaneous fixation of unstable pelvic ring fractures.
        Injury. 2008; 39: 869-874
        • Routt Jr., M.L.
        • Nork S.E.
        • Mills W.J
        Percutaneous fixation of pelvic ring disruptions.
        Clin Orthop Relat Res. 2000; : 15-29
        • Alton T.B.
        • Gee A.O.
        Classifications in brief: young and burgess classification of pelvic ring injuries.
        Clin Orthop Relat Res. 2014; 472: 2338-2342
        • Abdelfattah A.
        • Moed B.R.
        Ligamentous contributions to pelvic stability in a rotationally unstable open-book injury: a cadaver study.
        Injury. 2014; 45: 1599-1603
        • Vrahas M.
        • Hern T.C.
        • Diangelo D.
        • Kellam J.
        • Tile M.
        Ligamentous contributions to pelvic stability.
        Orthopedics. 1995; 18: 271-274
        • Hammer N.
        • Steinke H.
        • Lingslebe U.
        • Bechmann I.
        • Josten C.
        • Slowik V.
        • et al.
        Ligamentous influence in pelvic load distribution.
        Spine J. 2013; 13: 1321-1330
        • Bohme J.
        • Lingslebe U.
        • Steinke H.
        • Werner M.
        • Slowik V.
        • Josten C.
        • et al.
        The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries–A computer study to gain insight into open book trauma.
        J Orthop Res. 2014; 32: 873-879
        • Simonian P.T.
        • Routt Jr., M.L.
        • Harrington R.M.
        • Mayo K.A.
        • Tencer A.F
        Biomechanical simulation of the anteroposterior compression injury of the pelvis. An understanding of instability and fixation.
        Clin Orthop Relat Res. 1994; 309: 245-256
        • Hefzy M.S.
        • Ebraheim N.
        • Mekhail A.
        • Caruntu D.
        • Lin H.
        • Yeasting R.
        Kinematics of the human pelvis following open book injury.
        Med Eng Phys. 2003; 25: 259-274
        • van Zwienen C.M.
        • van den Bosch E.W.
        • Snijders C.J.
        • Kleinrensink G.J.
        • van Vugt A.B.
        Biomechanical comparison of sacroiliac screw techniques for unstable pelvic ring fractures.
        J Orthop Trauma. 2004; 18: 589-595
        • Dall B.E.
        • Eden S.V.
        • Cho W.
        • Karkenny A.
        • Brooks D.M.
        • Hayward 2nd, G.M.
        • et al.
        Biomechanical analysis of motion following sacroiliac joint fusion using lateral sacroiliac screws with or without lumbosacral instrumented fusion.
        Clin Biomech (Bristol, Avon). 2019; 68: 182-189
        • Wang M.
        • Dumas G.A.
        Mechanical behavior of the female sacroiliac joint and influence of the anterior and posterior sacroiliac ligaments under sagittal loads.
        Clin Biomech (Bristol, Avon). 1998; 13: 293-299
        • Klima S.
        • Grunert R.
        • Ondruschka B.
        • Scholze M.
        • Seidel T.
        • Werner M.
        • et al.
        Pelvic orthosis effects on posterior pelvis kinematics an in-vitro biomechanical study.
        Sci Rep. 2018; 8: 15980
        • Potvin J.R.
        Use of NIOSH equation inputs to calculate lumbosacral compression forces.
        Ergonomics. 1997; : 691-707
        • Cardwell M.C.
        • Meinerz C.M.
        • Martin J.M.
        • Beck C.J.
        • Wang M.
        • Schmeling G.J.
        Systematic review of sacroiliac joint motion and the effect of screw fixation.
        Clin Biomech (Bristol, Avon). 2021; 85105368
        • Gary J.L.
        • Mulligan M.
        • Banagan K.
        • Sciadini M.F.
        • Nascone J.W.
        • Oʼtoole R.V.
        Magnetic resonance imaging for the evaluation of ligamentous injury in the pelvis: a prospective case-controlled study.
        J Orthop Trauma. 2014; 28: 41-47
        • Leone E.
        • Garipoli A.
        • Ripani U.
        • Lanzetti R.M.
        • Spoliti M.
        • Creta D.
        • et al.
        Imaging review of pelvic ring fractures and its complications in high-energy trauma.
        Diagnostics (Basel). 2022; 12: 10-14
        • Conza N.E.
        • Rixen D.J.
        • Plomp S.
        Vibration testing of a fresh-frozen human pelvis: the role of the pelvic ligaments.
        J Biomech. 2007; 40: 1599-1605
        • Hammer N.
        • Scholze M.
        • Kibsgard T.
        • Klima S.
        • Schleifenbaum S.
        • Seidel T.
        • et al.
        Physiological in vitro sacroiliac joint motion: a study on three-dimensional posterior pelvic ring kinematics.
        J Anat. 2019; 234: 346-358
        • Vleeming A.
        • Schuenke M.D.
        • Masi A.T.
        • Carreiro J.E.
        • Danneels L.
        • Willard F.H.
        The sacroiliac joint: an overview of its anatomy, function and potential clinical implications.
        J Anat. 2012; 221: 537-567
        • Berber O.
        • Amis A.A.
        • Day A.C.
        Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures.
        J Bone Joint Surg Br. 2011; 93: 237-244
        • Tabaie S.A.
        • Bledsoe J.G.
        • Moed B.R.
        Biomechanical comparison of standard iliosacral screw fixation to transsacral locked screw fixation in a type C zone II pelvic fracture model.
        J Orthop Trauma. 2013; 27: 521-526
        • Lindsey D.P.
        • Parrish R.
        • Gundanna M.
        • Leasure J.
        • Yerby S.A.
        • Kondrashov D.
        Biomechanics of unilateral and bilateral sacroiliac joint stabilization: laboratory investigation.
        J Neurosurg Spine. 2018; 28: 326-332
        • Jazini E.
        • Klocke N.
        • Tannous O.
        • Johal H.S.
        • Hao J.
        • Salloum K.
        • et al.
        Does lumbopelvic fixation add stability? A cadaveric biomechanical analysis of an unstable pelvic fracture model.
        J Orthop Trauma. 2017; 31: 37-46
        • Sturesson B.
        • Selvik G.
        • Uden A.
        Movements of the sacroiliac joints. A roentgen stereophotogrammetric analysis.
        Spine (Phila Pa 1976). 1989; 14: 162-165