The right turn around: Penrose tourniquet application in paediatrics

Published:January 03, 2023DOI:



      Commercially available tourniquets are ill-suited for paediatric patients with limb circumferences smaller than the required mechanism, forcing surgeons to improvise. This study aimed to quantify pressures exerted by the Penrose tourniquet when applied on a phantom model and evaluate the intra-/inter-rater reproducibility of the technique previously proposed.


      Eight calibrated pressure sensors were distributed evenly along the inner and outer circumference of a silicon-based model. A 30cm-by-3.2 cm ARGYLE Penrose drain, 4-by-4 gauze, marker and ruler were used. The optimal interval for arterial occlusion was determined to be 70% of limb circumference. The tourniquet was secured using two half-knots formed by gauze.


      Two-turns of the tourniquet about the model generated mean pressures (SD) of 209.43 (SD:35.98 mmHg) (95%CI: 195.85–224.00 mmHg) (outer-sensor) and 246.32 (SD:61.92 mmHg) (95%CI: 221.02–273.49 mmHg) (inner-sensor). Three-turns generated mean pressures of 302.07 (SD:23.98 mmHg) (95%CI: 292.29–312.53 mmHg) (outer-sensor) and 314.44 (SD:56.70 mmHg) (95%CI: 291.25–338.25 mmHg) (inner-sensor).


      The Penrose tourniquet has clinical utility, particularly for patients where commercially available tourniquets are not suitable. Current application techniques generate inconsistent pressures. Using the existing model, further refinement can be done to improve the consistency and safety of the application. We recommend using intervals of slightly more than 70% of limb circumference and only two turns of the Penrose tourniquet during application.

      Level of Evidence

      : V


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sato J.
        • Ishii Y.
        • Noguchi H.
        • Takeda M.
        Safety and efficacy of a new tourniquet system.
        BMC Surg. 2012; 12: 17
        • Charlton N.P.
        • Goolsby C.A.
        • Zideman D.A.
        • Maconochie I.K.
        • Morley P.T.
        • Singletary E.M.
        Appropriate tourniquet types in the pediatric population: a systematic review.
        Cureus. 2021; 13: e14474
        • Watson S.
        The principles of management of congenital anomalies of the upper limb.
        Arch Dis Child. 2000; 83: 10-17
        • Misra A.
        • Panda A.
        • Sharma R.
        Tourniquet cuff pressures in pediatric patients: urgent need to device guidelines?.
        Paediatr Anaesth. 2010; 20: 369-370
        • Sharma J.P.
        • Salhotra R.
        Tourniquets in orthopedic surgery.
        Indian J Orthop. 2012; 46: 377-383
        • Tredwell S.J.
        • Wilmink M.
        • Inkpen K.
        • McEwen J.A.
        Pediatric tourniquets: analysis of cuff and limb interface, current practice, and guidelines for use.
        J Pediatr Orthop. 2001; 21: 671-676
        • Lahham S.
        • Tu K.
        • Ni M.
        • et al.
        Comparison of pressures applied by digital tourniquets in the emergency department.
        West J Emerg Med. 2011; 12: 242-249
        • Calif E.
        • Stahl S.
        Blood flow management in hand surgery using the s-mart device: a prospective randomized controlled study.
        Ambul Surg. 2008; 14: 20-24
        • Kang Y.C.
        • Arjandas M.
        • Teoh L.C.
        Revisiting the elastic band tourniquet in pediatric upper limb surgery.
        Tech Hand Up Extrem Surg. 2018; 22: 43-45
        • Wang Y.
        • Tai B.L.
        • Yu H.
        • Shih A.J
        Silicone-based tissue-mimicking phantom for needle insertion simulation.
        J Med Device. 2014; 8
        • Kumar K.
        • Railton C.
        • Tawfic Q.
        Tourniquet application during anesthesia: "What we need to know?".
        J Anaesthesiol Clin Pharmacol. 2016; 32: 424-430
        • El-Sherif N.
        • Lowndes B.
        • Franz W.
        • Hallbeck M.S.
        • Belau S.
        • Sztajnkrycer M.D.
        Sweating the little things: tourniquet application efficacy in two models of pediatric limb circumference.
        Mil Med. 2019; 184: 361-366
      1. Vretis J. Comparison of commercial tourniquets in a pediatric trauma patient model. 2018 NAEMSP Scientific Assembly, Prehospital Emergency Care, 2018, Vol. 22:1, 123.

        • Levy O.
        • David Y.
        • Heim M.
        • Eldar I.
        • Chetrit A.
        • Engel J.
        Minimal tourniquet pressure to maintain arterial closure in upper limb surgery.
        J Hand Surg Br. 1993; 18: 204-206
        • Vaughan A.
        • Hardwick T.
        • Gaskin J.
        • Bendall S.
        Tourniquet use in orthopaedic surgery.
        Orthop Trauma. 2017; 31: 312-315
        • Kam P.C.
        • Kavanagh R.
        • Yoong F.F.
        The arterial tourniquet: pathophysiological consequences and anaesthetic implications.
        Anaesthesia. 2001; 56: 534-545
        • Pedowitz R.A.
        Tourniquet-induced neuromuscular injury. A recent review of rabbit and clinical experiments.
        Acta Orthop Scand Suppl. 1991; 245: 1-33
        • Roth K.E.
        • Mandryka B.
        • Maier G.S.
        • et al.
        In-vivo analysis of epicutaneous pressure distribution beneath a femoral tourniquet – an observational study.
        BMC Musculoskelet Disord. 2015; 16: 1
        • Woo S.T.
        • Park C.W.
        • Sung J.H.
        • Park C.M
        Implementation of portable automatic tourniquet with high-elasticity biocompatible strap.
        Appl Sci. 2021; 11: 4653
        • Valliere M.J.
        • Wall P.L.
        • Buising C.M.
        From pull to pressure: effects of tourniquet buckles and straps.
        J Am Coll Surg. 2018; 227: 332-345
        • Burnett M.G.
        • Zager E.L.
        Pathophysiology of peripheral nerve injury: a brief review.
        Neurosurg Focus. 2004; 16: E1
        • Gilliatt R.W.
        • Ochoa J.
        • Rudge P.
        • Neary D.
        The cause of nerve damage in acute compression.
        Trans Am Neurol Assoc. 1974; 99: 71-74
        • McLaren A.C.
        • Rorabeck C.H.
        The pressure distribution under tourniquets.
        J Bone Joint Surg Am. 1985; 67: 433-438
        • Shaw J.A.
        • Murray D.G.
        The relationship between tourniquet pressure and underlying soft-tissue pressure in the thigh.
        J Bone Joint Surg Am. 1982; 64: 1148-1152
        • Katano Y.
        • Nakano K.
        • Otsuki M.
        • Matsukawa H.
        Novel friction law for the static friction force based on local precursor slipping.
        Sci Rep. 2014; 4: 6324
        • Ohura T.
        • Takahashi M.
        • Ohura Jr., N.
        Influence of external forces (pressure and shear force) on superficial layer and subcutis of porcine skin and effects of dressing materials: are dressing materials beneficial for reducing pressure and shear force in tissues?.
        Wound Repair Regeneration. 2008; 16: 102-107
        • Van Ee C.A.
        • Chasse A.L.
        • Myers B.S.
        The effect of postmortem time and freezer storage on the mechanical properties of skeletal muscle.
        in: Proceedings of the 42nd Stapp Car Crash Conference, Tempe, Arizona1998: 337
        • Van Ee C.A.
        • Chasse A.L.
        • Myers B.S.
        Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage.
        J Biomech Eng. 2000; 122: 9-14