Advertisement

Time-varying characteristics of the induced membrane and its effects on bone defect repair

  • Author Footnotes
    1 These authors contributed equally to this work.
    Wei Lu
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Ruibo Zhao
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China
    Search for articles by this author
  • Xiaolei Fan
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China
    Search for articles by this author
  • Haoyi Wang
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China
    Search for articles by this author
  • Min Zeng
    Correspondence
    Corresponding author.
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:December 24, 2022DOI:https://doi.org/10.1016/j.injury.2022.12.026

      Highlights

      • Determining characteristics of the induced membrane following various periods of PMMA spacer insertion.
      • Determining the effect of various intervals till bone grafting on subsequent bone defect repair.
      • Exploring the appropriate interval of PMMA insertion in the Masquelet technique.

      Abstract

      Purpose

      This study intended to determine the properties of induced membranes after various periods of polymethyl methacrylate (PMMA) retention and the effect of different retention intervals on subsequent defect repair.

      Methods

      Model of a critical bone defect in rabbits was prepared to obtain the induced membrane. For varying intervals of spacer insertion (2, 4, 6, 8, 12, 16, and 20 weeks postoperatively), angiogenesis, osteogenesis, and MSC-related properties were analyzed by immunohistochemistry and western-blot. Furthermore, 2, 4, 6, and 8 weeks after PMMA insertion, bone grafting was performed. Characteristics of defect repair were analyzed by X-ray and micro-CT analysis.

      Results

      The induced membrane displayed angiogenesis, osteogenesis, and MSC-related properties from the 2- to 20-week intervals. Quantitation of protein expression (RUNX2, ALP, VEGF, TGF-beta, OCT4, and STRO1) revealed that selected proteins gradually rose to a high level at 4–8 weeks postoperatively and then decreased to a low level over a long time period. Following bone grafting, the most new bone formation was in the group when grafting was performed at 4 weeks, followed by the groups at 2 and 6 weeks, with the least in the group at 8 weeks.

      Conclusion

      The induced membrane displays angiogenesis, osteogenesis, and MSC-related properties from the 2- to 20-week intervals. These were increased to a peak level at 4–8 weeks postoperatively and then gradually decreased. The optimal timing for bone grafting at the second stage in the presented model was 4 weeks after PMMA insertion.

      Keywords

      Abbreviations:

      PMMA (polymethyl methacrylate), MSCs (mesenchymal stem cells), IHC (immunohistochemistry), BV/TV (bone volume per total volume), Tb. N (trabecular number), Tb. Th (trabecular thickness)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tong K.
        • Zhong Z.
        • Peng Y.
        • Lin C.
        • Cao S.
        • Yang Y.
        • et al.
        Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis.
        Injury. 2017; 48: 1616-1622https://doi.org/10.1016/j.injury.2017.03.042
        • Wiese A.
        • Pape H.C.
        Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions.
        Orthop Clin N Am. 2010; 41 (table of contents): 1-4https://doi.org/10.1016/j.ocl.2009.07.003
        • Masquelet A.C.
        • Begue T.
        The concept of induced membrane for reconstruction of long bone defects.
        Orthop Clin N Am. 2010; 41 (table of contents): 27-37https://doi.org/10.1016/j.ocl.2009.07.011
        • Masquelet A.
        • Kanakaris N.K.
        • Obert L.
        • Stafford P.
        • Giannoudis P.V.
        Bone repair using the Masquelet technique.
        J Bone Joint Surg Am. 2019; 101: 1024-1036https://doi.org/10.2106/JBJS.18.00842
        • Taylor B.C.
        • French B.G.
        • Fowler T.T.
        • Russell J.
        • Poka A.
        Induced membrane technique for reconstruction to manage bone loss.
        J Am Acad Orthop Surg. 2012; 20: 142-150https://doi.org/10.5435/JAAOS-20-03-142
        • Giannoudis P.V.
        • Faour O.
        • Goff T.
        • Kanakaris N.
        • Dimitriou R.
        Masquelet technique for the treatment of bone defects: tips-tricks and future directions.
        Injury. 2011; 42: 591-598https://doi.org/10.1016/j.injury.2011.03.036
        • Nau C.
        • Simon S.
        • Schaible A.
        • Seebach C.
        • Schroder K.
        • Marzi I.
        • et al.
        Influence of the induced membrane filled with syngeneic bone and regenerative cells on bone healing in a critical size defect model of the rat's femur.
        Injury. 2018; 49: 1721-1731https://doi.org/10.1016/j.injury.2018.06.041
        • Fenelon M.
        • Etchebarne M.
        • Siadous R.
        • Gremare A.
        • Durand M.
        • Sentilhes L.
        • et al.
        Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2.
        Mater Sci Eng C Mater Biol Appl. 2021; 124112032https://doi.org/10.1016/j.msec.2021.112032
        • Pelissier P.
        • Masquelet A.C.
        • Bareille R.
        • Pelissier S.M.
        • Amedee J.
        Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration.
        J Orthop Res. 2004; 22: 73-79https://doi.org/10.1016/S0736-0266(03)00165-7
        • Xie J.
        • Liu D.
        • Wang H.
        • Long H.
        • Zhu Y.
        • Hu Y.
        • et al.
        Effects of topical mechanical stability on the formation of Masquelet membrane in a rabbit radial defect model.
        Sci Rep. 2020; 10: 18939https://doi.org/10.1038/s41598-020-76112-3
        • Wang W.
        • Zuo R.
        • Long H.
        • Wang Y.
        • Zhang Y.
        • Sun C.
        • et al.
        Advances in the Masquelet technique: myeloid-derived suppressor cells promote angiogenesis in PMMA-induced membranes.
        Acta Biomater. 2020; 108: 223-236https://doi.org/10.1016/j.actbio.2020.03.010
        • Alford A.I.
        • Nicolaou D.
        • Hake M.
        • McBride-Gagyi S.
        Masquelet's induced membrane technique: review of current concepts and future directions.
        J Orthop Res. 2021; 39: 707-718https://doi.org/10.1002/jor.24978
        • Giannoudis P.V.
        • Harwood P.J.
        • Tosounidis T.
        • Kanakaris NK.
        Restoration of long bone defects treated with the induced membrane technique: protocol and outcomes.
        Injury. 2016; 47 (Suppl): S53-S61https://doi.org/10.1016/S0020-1383(16)30840-3
        • Mauffrey C.
        • Hake M.E.
        • Chadayammuri V.
        • Masquelet A.C.
        Reconstruction of long bone infections using the induced membrane technique: tips and tricks.
        J Orthop Trauma. 2016; 30: e188-e193https://doi.org/10.1097/BOT.0000000000000500
        • Wang X.
        • Wei F.
        • Luo F.
        • Huang K.
        • Xie Z.
        Induction of granulation tissue for the secretion of growth factors and the promotion of bone defect repair.
        J Orthop Surg Res. 2015; 10: 147https://doi.org/10.1186/s13018-015-0287-4
        • Aho O.M.
        • Lehenkari P.
        • Ristiniemi J.
        • Lehtonen S.
        • Risteli J.
        • Leskela H.V.
        The mechanism of action of induced membranes in bone repair.
        J Bone Joint Surg Am. 2013; 95: 597-604https://doi.org/10.2106/JBJS.L.00310
        • Gindraux F.
        • Loisel F.
        • Bourgeois M.
        • Oudina K.
        • Melin M.
        • de Billy B.
        • et al.
        Induced membrane maintains its osteogenic properties even when the second stage of Masquelet's technique is performed later.
        Eur J Trauma Emerg Surg. 2020; 46: 301-312https://doi.org/10.1007/s00068-019-01184-4
        • Taylor B.C.
        • Hancock J.
        • Zitzke R.
        • Castaneda J.
        Treatment of bone loss with the induced membrane technique: techniques and outcomes.
        J Orthop Trauma. 2015; 29: 554-557https://doi.org/10.1097/BOT.0000000000000338
        • Xie J.
        • Wang W.
        • Fan X.
        • Li H.
        • Wang H.
        • Liao R.
        • et al.
        Masquelet technique: effects of vancomycin concentration on quality of the induced membrane.
        Injury. 2022; 53: 868-877https://doi.org/10.1016/j.injury.2021.11.003
        • Xie J.
        • Wang W.
        • Fan X.
        • Li H.
        • Wang H.
        • Liao R.
        • et al.
        Effects of PMMA spacer loaded with varying vancomycin concentrations on bone regeneration in the Masquelet technique.
        Sci Rep. 2022; 12: 4255https://doi.org/10.1038/s41598-022-08381-z
        • Cho J.W.
        • Kim J.
        • Cho W.T.
        • Kim J.K.
        • Song J.H.
        • Kim H.J.
        • et al.
        Circumferential bone grafting around an absorbable gelatin sponge core reduced the amount of grafted bone in the induced membrane technique for critical-size defects of long bones.
        Injury. 2017; 48: 2292-2305https://doi.org/10.1016/j.injury.2017.08.012
        • Klein C.
        • Monet M.
        • Barbier V.
        • Vanlaeys A.
        • Masquelet A.C.
        • Gouron R.
        • et al.
        The Masquelet technique: current concepts, animal models, and perspectives.
        J Tissue Eng Regen Med. 2020; 14: 1349-1359https://doi.org/10.1002/term.3097
        • Gouron R.
        • Petit L.
        • Boudot C.
        • Six I.
        • Brazier M.
        • Kamel S.
        • et al.
        Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique.
        J Tissue Eng Regen Med. 2017; 11: 382-389https://doi.org/10.1002/term.1921
        • Cuthbert R.J.
        • Churchman S.M.
        • Tan H.B.
        • McGonagle D.
        • Jones E.
        • Giannoudis P.V.
        Induced periosteum a complex cellular scaffold for the treatment of large bone defects.
        Bone. 2013; 57: 484-492https://doi.org/10.1016/j.bone.2013.08.009
        • Henrich D.
        • Seebach C.
        • Nau C.
        • Basan S.
        • Relja B.
        • Wilhelm K.
        • et al.
        Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model.
        J Tissue Eng Regen Med. 2016; 10: E382-EE96https://doi.org/10.1002/term.1826
        • Fischer C.
        • Doll J.
        • Tanner M.
        • Bruckner T.
        • Zimmermann G.
        • Helbig L.
        • et al.
        Quantification of TGF-ss1, PDGF and IGF-1 cytokine expression after fracture treatment vs. non-union therapy via Masquelet.
        Injury. 2016; 47: 342-349https://doi.org/10.1016/j.injury.2015.11.007
        • Piacentini F.
        • Ceglia M.J.
        • Bettini L.
        • Bianco S.
        • Buzzi R.
        • Campanacci D.A.
        Induced membrane technique using enriched bone grafts for treatment of posttraumatic segmental long bone defects.
        J Orthop Traumatol. 2019; 20: 13https://doi.org/10.1186/s10195-019-0522-6
        • Scholz A.O.
        • Gehrmann S.
        • Glombitza M.
        • Kaufmann R.A.
        • Bostelmann R.
        • Flohe S.
        • et al.
        Reconstruction of septic diaphyseal bone defects with the induced membrane technique.
        Injury. 2015; 46 (Suppl): S121-S124https://doi.org/10.1016/S0020-1383(15)30030-9
        • Yilmaz O.
        • Ozmeric A.
        • Alemdaroglu K.B.
        • Celepli P.
        • Hucumenoglu S.
        • Sahin O.
        Effects of concentrated growth factors (CGF) on the quality of the induced membrane in Masquelet's technique - an experimental study in rabbits.
        Injury. 2018; 49: 1497-1503https://doi.org/10.1016/j.injury.2018.06.011
        • Tang Q.
        • Tong M.
        • Zheng G.
        • Shen L.
        • Shang P.
        • Liu H.
        Masquelet's induced membrane promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by activating the Smad and MAPK pathways.
        Am J Transl Res. 2018; 10: 1211-1219
        • Stegen S.
        • van Gastel N.
        • Carmeliet G.
        Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.
        Bone. 2015; 70: 19-27https://doi.org/10.1016/j.bone.2014.09.017
        • Nau C.
        • Seebach C.
        • Trumm A.
        • Schaible A.
        • Kontradowitz K.
        • Meier S.
        • et al.
        Alteration of Masquelet's induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat's femur.
        Injury. 2016; 47: 325-334https://doi.org/10.1016/j.injury.2015.10.079
        • Liodakis E.
        • Giannoudis V.P.
        • Sehmisch S.
        • Jha A.
        • Giannoudis PV.
        Bone defect treatment: does the type and properties of the spacer affect the induction of Masquelet membrane? Evidence today.
        Eur J Trauma Emerg Surg. 2022; https://doi.org/10.1007/s00068-022-02005-x
        • Gessmann J.
        • Rosteius T.
        • Baecker H.
        • Sivalingam K.
        • Peter E.
        • Schildhauer T.A.
        • et al.
        Is the bioactivity of induced membranes time dependent?.
        Eur J Trauma Emerg Surg. 2022; 48: 3051-3061https://doi.org/10.1007/s00068-021-01844-4
        • Gindraux F.
        • Rondot T.
        • de Billy B.
        • Zwetyenga N.
        • Fricain J.C.
        • Pagnon A.
        • et al.
        Similarities between induced membrane and amniotic membrane: novelty for bone repair.
        Placenta. 2017; 59: 116-123https://doi.org/10.1016/j.placenta.2017.06.340
        • Gaio N.
        • Martino A.
        • Toth Z.
        • Watson J.T.
        • Nicolaou D.
        • McBride-Gagyi S.
        Masquelet technique: the effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model.
        J Biomech. 2018; 72: 53-62https://doi.org/10.1016/j.jbiomech.2018.02.026
        • Morelli I.
        • Drago L.
        • George D.A.
        • Gallazzi E.
        • Scarponi S.
        • Romano CL.
        Masquelet technique: myth or reality? A systematic review and meta-analysis.
        Injury. 2016; 47 (Suppl): S68-S76https://doi.org/10.1016/S0020-1383(16)30842-7
        • Azi M.L.
        • Teixeira A.A.A.
        • Cotias R.B.
        • Joeris A.
        • Kfuri M.
        Induced-membrane technique in the management of posttraumatic bone defects.
        JBJS Essent Surg Tech. 2019; 9: e22https://doi.org/10.2106/JBJS.ST.18.00099
        • Masquelet A.C.
        Induced membrane technique: pearls and pitfalls.
        J Orthop Trauma. 2017; 31 (Suppl): S36-SS8https://doi.org/10.1097/BOT.0000000000000979
        • Gruber H.E.
        • Ode G.
        • Hoelscher G.
        • Ingram J.
        • Bethea S.
        • Bosse MJ.
        Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects.
        Bone Joint Res. 2016; 5: 106-115https://doi.org/10.1302/2046-3758.54.2000483
        • Toth Z.
        • Roi M.
        • Evans E.
        • Watson J.T.
        • Nicolaou D.
        • McBride-GagyiS.Masquelet Technique
        Effects of spacer material and micro-topography on factor expression and bone regeneration.
        Ann Biomed Eng. 2019; 47: 174-189https://doi.org/10.1007/s10439-018-02137-5