Advertisement

How to Clear Polytrauma Patients for Fracture Fixation: Results of a systematic review of the literature

Open AccessPublished:November 09, 2022DOI:https://doi.org/10.1016/j.injury.2022.11.008

      Abstract

      Introduction

      Early patient assessment is relevant for surgical decision making in severely injured patients and early definitive surgery is known to be beneficial in stable patients. The aim of this systematic review is to extract parameters indicative of risk factors for adverse outcome. Moreover, we aim to improve decision making and separate patients who would benefit from early versus staged definitive surgical fixation.

      Methods

      Following the PRISMA guidelines, a systematic review of peer-reviewed articles in English or German language published between (2000 and 2022) was performed. The primary outcome was the pathophysiological response to polytrauma including coagulopathy, shock/haemorrhage, hypothermia and soft tissue injury (trauma, brain injury, thoracic and abdominal trauma, and musculoskeletal injury) to determine the treatment strategy associated with the least amount of complications. Articles that had used quantitative parameters to distinguish between stable and unstable patients were summarized. Two authors screened articles and discrepancies were resolved by consensus. Quantitative values for relevant parameters indicative of an unstable polytrauma patient were obtained.

      Results

      The initial systematic search using MeSH criteria yielded 1550 publications deemed relevant to the following topics (coagulopathy (n = 37), haemorrhage/shock (n = 7), hypothermia (n = 11), soft tissue injury (n = 24)). Thresholds for stable, borderline, unstable and in extremis conditions were defined according to the existing literature as follows: Coagulopathy; International Normalized Ratio (INR) and viscoelastic methods (VEM)/Blood/shock; lactate, systolic blood pressure and haemoglobin, hypothermia; thresholds in degrees Celsius/Soft tissue trauma: traumatic brain injury, thoracic and abdominal trauma and musculoskeletal trauma.

      Conclusion

      In this systematic literature review, we summarize publications by focusing on different pathways that stimulate pathophysiological cascades and remote organ damage. We propose that these parameters can be used for clinical decision making within the concept of safe definitive surgery (SDS) in the treatment of severely injured patients.

      Keywords

      Abbreviations:

      acots (acute coagulopathy of trauma shock), Ais (abbreviated injury scale), Ards (acute respiratory distress syndrome), Atls (advanced trauma life support), (degree celsius), Cpp (cerebral perfusion pressure), Dc (damage control), Dcs (damage control surgery), Dco (damage control orthopedics), Etc (early total care), Fpr (false positive rate), Hb (haemoglobin), Icp (intracerebral pressure), Iss (injury severity score), Inr (international normalized ratio), Map (mean arterial pressure), Mof (multiple organ failure), Mods (multiple organ dysfunction syndrome), Mtp (massive transfusion protocol), NpPV (Negative predictive value)

      Background

      Fracture fixation has been known to represent an essential part of the treatment in patients with multiple trauma [
      • Nauth A.
      • Hildebrand F.
      • Vallier H.
      • Moore T.
      • Leenen L.
      • Mckinley T.
      • Pape H.C.
      Polytrauma: update on basic science and clinical evidence.
      ]. Early definitive surgery is known to be beneficial in stable patients [
      • Nahm N.J.
      • Como J.J.
      • Wilber J.H.
      • Vallier H.A.
      Early appropriate care: definitive stabilization of femoral fractures within 24 h of injury is safe in most patients with multiple injuries.
      ], however, in patients with physiological derangements early fracture fixation is associated with severe complications during the clinical course [
      • Lichte P.
      • Kobbe P.
      • Dombroski D.
      • Pape H.C.
      Damage control orthopedics: current evidence.
      ]. Abbreviated surgery concepts reduced mortality and morbidity in selective polytrauma population [
      • Shapiro M.B.
      • Jenkins D.H.
      • Schwab C.W.
      • Rotondo M.F.
      Damage control: collective review.
      ]. However, there are no recommendations showing how to identify polytrauma patients with fractures that benefit from early surgical stabilization.
      Numerous parameters can be used for the initial assessment of polytrauma patients. Some of the parameters can alrealy be assessed in the trauma bay (Fig. 1), while others are time-consuming and only available during the clinical course, which limits the initial assessment of the patient. The assessment of injury severity in AIS/ISS is still very subjective and therefore not always optimal for surgical decision making [
      • Bolierakis E.
      • Schick S.
      • Sprengel K.
      • Jensen K.O.
      • Hildebrand F.
      • Pape H.C.
      • Pfeifer R.
      Interobserver variability of injury severity assessment in polytrauma patients: does the anatomical region play a role?.
      ]. Moreover, several clinical scores or protocols have been proposed in order to classify severely injured patients [
      • Halvachizadeh S.
      • Pape H.C.
      Determining the patient at risk - are scoring systems helpful to develop individualized concepts for safe definitive fracture fixation and damage control techniques?.
      ]. Some of them focus mainly on one system (acid-base system) and are therefore unsuitable for the complete assessment of a multiply injured patient [
      • Vallier H.A.
      • Moore T.A.
      • Como J.J.
      • Wilczewski P.A.
      • Steinmetz M.P.
      • Wagner K.G.
      • Smith C.E.
      • Wang X.F.
      • Dolenc A.J.
      Complications are reduced with a protocol to standardize timing of fixation based on response to resuscitation.
      ]. Others are very detailed and therefore difficult to use in daily practice [
      • Hildebrand F.
      • Lefering R.
      • Andruszkow H.
      • Zelle B.A.
      • Barkatali B.M.
      • Pape H.C.
      Development of a scoring system based on conventional parameters to assess polytrauma patients: polyTrauma Grading Score (PTGS).
      ]. However, the identification of patients at risk at the initial stage of treatment is crucial.
      Fig 1:
      Fig. 1Parameters required for initial assessment of a severely injured patient (following Pape et al.)
      Pape HC, Giannoudis PV, Krettek C, Trentz O. Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making. J Orthop Trauma. 2005 Sep;19(8):551–62. doi: 10.1097/01.bot.0000161712.87129.80. PMID: 16,118,563.
      The exhaustion of physiological reserves results in the development of profound acidosis, hypothermia and coagulopathy [
      • Moore E.
      Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome.
      ]. The "Triad of Death” is widely accepted and parameters such as lactate, coagulation and temperature are routinely used as indicators of risk [
      • Rotondo M.F.
      • Schwab C.W.
      • McGonigal M.D.
      • et al.
      Damage control: an approach for improved survival in exsanguinating penetrating abdominal injury.
      ]. In blunt trauma patients’ tissue trauma and related cell damage has been described as another component in the assessment of trauma patients [
      • Pape H.C.
      • Giannoudis P.V.
      • Krettek C.
      • Trentz O.
      Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making.
      ]. Studies analysing the metabolome after trauma indicate that optimized resuscitative interventions in critically ill patients are possible after identifying the severity of tissue injury and haemorrhage [
      • Clendenen N.
      • Nunns G.R.
      • Moore E.E.
      • Reisz J.A.
      • Gonzalez E.
      • Peltz E.
      • Silliman C.C.
      • Fragoso M.
      • Nemkov T.
      • Wither M.J.
      • Hansen K.
      • Banerjee A.
      • Moore H.B.
      • DʼAlessandro A.
      Hemorrhagic shock and tissue injury drive distinct plasma metabolome derangements in swine.
      ].
      In the available literature, the majority of existing studies depend on the availability of parameters included in large databases. While, new parameters have recently become available, such as ROTEM/TEG, their possible value has not been fully evaluated [
      • Spahn D.R.
      • Bouillon B.
      • Cerny V.
      • Duranteau J.
      • Filipescu D.
      • Hunt B.J.
      • Komadina R.
      • Maegele M.
      • Nardi G.
      • Riddez L.
      • Samama C.M.
      • Vincent J.L.
      • Rossaint R.
      The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition.
      ]. The assessment of numerous systems and parameters, such as acid base, coagulation, temperature and tissue damage, has been shown to be a safe measure allowing the early prediction of complications [
      • Halvachizadeh S.
      • Baradaran L.
      • Cinelli P.
      • Pfeifer R.
      • Sprengel K.
      • Pape H.C.
      How to detect a polytrauma patient at risk of complications: a validation and database analysis of four published scales.
      ]. Taking into account the known four pathophysiological cascades, the aim of this systematic review is to identify parameters and thresholds that indicate risk factors for an unfavourable outcome (early complications), allowing the earliest possible management of fractures. In addition, we aim to improve decision making and distinguish patients who would benefit from early or staged definitive surgical fixation by identifying quantitative values that are useful in daily practice.

      Methods

      The reporting of this systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (http://www.prisma-statement.org/).

      Eligibility criteria

      Inclusion criteria were original studies published from 2000 until 2022, reported in English or German language. Further inclusion criteria were the assessment of the following selected quantitative parameters in polytrauma as defined by an injury severity score (ISS) of 16 points and higher. In this analysis, parameters were sought to represent the four pathophysiologic cascades in the trauma bay [
      • Pape H.C.
      • Giannoudis P.V.
      • Krettek C.
      • Trentz O.
      Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making.
      ]. These include: the triad of death (acidosis, coagulopathy and hypothermia) and the assessment of soft tissue damage and severity: Coagulopathy (including measures of either INR, or r-TEG/ROTEM-values), haemorrhage (blood pressure, haemoglobin count (Hb)), hypothermia (degrees Celsius ( °C)), soft tissue injuries including Thorax Trauma Severity Score (TTSS), abdominal trauma and traumatic brain injuries (TBI), and severity of extremity and pelvic injuries.
      Exclusion criteria were letters, commentaries, books, correspondence, conference abstracts, expert opinions, case studies, editorials, reviews and in vitro/vivo experiments. Further exclusion criteria included articles that assessed combat trauma, paediatric trauma, and isolated traumatic brain injuries (TBI).

      Information sources and search strategy

      The primary information sources were MEDLINE, the reference lists of articles that met the inclusion criteria, and relevant studies recommended by experts in the field of trauma surgery. The search was conducted between Jan 5 and April 5, 2022. A combination of controlled vocabulary and regular search terms was used. The search terms were adjusted for each topic individually to detect the most relevant sources.

      References of included articles

      To provide a more profound data collection, all reviews that were obtained by our search terms, were individually screened for referred relevant original articles focusing our regions of interest. Those were included if fulfilling our inclusion criteria and analysed separately. Next to papers identified via search terms, alternative sources have been used to optimize the dataset. This includes sources used by reviews, identified via our search terms, that fulfil the inclusion criteria as well as relevant studies recommended by experts in the field of trauma.
      The search for the articles was performed for predefined areas of interest as follows.

      Coagulopathy

      (polytrauma* OR "multiple traum*" OR "major traum*" OR "severely injured") AND (INR OR "international normalized ratio" OR "ROTEM" OR "Extem" OR "FIBTEM" OR "TEG" OR “Viscoelastic haemostatic assay” OR “VHA”) AND (complication* OR outcome* OR "DOC" OR "Damage control surgery*")

      Haemorrhage and shock

      (polytrauma* OR "multiple traum*" OR "major traum*" OR "severely injured") AND (anaemia* OR transfusion* AND (haemoglobin OR HB OR Hb OR haematocrit OR HcT OR HCT)) AND (complication* OR outcome*)

      Hypothermia

      (polytrauma* OR "multiple traum*" OR "major traum*" OR "severely injured") AND (hypotherm* OR "accidental hypotherm*") AND (" °C" OR ° OR "°F" OR degree*) AND (complication* OR outcome*)

      Soft tissue injury

      Thorax

      "Thoracic trauma severity score"; “Thorax trauma severity score”; TraumaRegister AND thorax*

      Traumatic brain iinjury

      (polytrauma* OR "multiple traum*" OR "major traum*" OR "severely injured") AND ("TBI" OR "traumatic* brain* injur*" OR “severe head*” OR "cerebral* injur*") AND (("ICP" OR "Intracranial pressure*" OR “intracranial hypertension*”) OR (TBI OR “severe head injur*” AND “mmHg”) OR ("craniecto* OR hemicran* OR craniotomy*)) AND (complication* OR outcome*); Polytrauma AND TBI AND Outcome; ("polytrauma*" OR "major injur*" OR "multiple trauma*") AND "TBI" AND "ICP"; ("polytrauma*" OR "major injur*" OR "multiple trauma*") AND "TBI" AND "Damage control"; ("polytrauma*" OR "major injur*" OR "multiple trauma*") AND "TBI" AND "unstable"

      Pelvis

      "Polytrauma" AND "Pelvis" AND "damage control"; TraumaRegister AND pelvi*

      Selection process

      The two first authors received the same list of articles and independently screened the titles and abstracts for eligibility criteria. Any discrepancies were either resolved by consensus or, if necessary, by a third party (senior author). Following the screening process full text analyses were performed. Data were extracted and stored, and qualitative and quantitative synthesis was performed. Articles were screened, analysed and stored as PDF files in EndNote™ version 20 by Carivate™.

      Data item

      Articles were stratified according to the aforementioned pathophysiological pathways. The included studies were searched for typical complications in the immediate post-traumatic course after polytrauma and the studies were inserted into the tables in a structured manner. General adverse outcomes after polytrauma were defined as mortality, mass transfusion, sepsis, MOF, SIRS, and ARDS. More specific complications were included depending on the topic assessed. These included the presence of shock, MTP (Massive Transfusion Protocol) activation, and the diagnosis of trauma induced coagulopathy in the field of haemorrhage and coagulopathy, and respiratory decompensation in the thoracic injury topic.
      Each pathophysiological cascade was considered in this review. The parameters and their cutoff values were listed in a table (Table 2) and the studies were compared. If the published values were associated with the lowest complication in the respective studies, then this parameter could indicate a "stable" state of the patient as a threshold value. On the other hand, values demonstrating increasing destabilization of the patient and associated with increasing complication rates were determined as a cutoff value for an "unstable" state. Values between the "stable" and "unstable" states were defined as "borderline." Patients "in extremis" were defined as being in an extreme situation, representing a life-threatening situation requiring immediate intensive care and resuscitation (Fig. 3).

      Study risk of bias assessment

      Yet study methodology was not a limiting factor for inclusion in this systematic review, a formal risk assessment using the Quality in Prognosis Studies (QUIPS) tool was used for evaluation [
      • Hayden J.A.
      • van der Windt D.A.
      • Cartwright J.L.
      • Côté P.
      • Bombardier C.
      Assessing bias in studies of prognostic factors.
      ]. Two authors (FK, RP) rated those studies independently; in case of discrepancy the higher risk evaluation was chosen (Table 3). Further aspects taken into consideration by the expert panel were study type, study size, clinical applicability and overall transferability of the data for qualitative synthesis.

      Synthesis methods

      Data was collected manually by one of the first authors and transferred onto a spreadsheet. In addition to general information and year of publication, items of interest were number of patients, type of study, outcome and quantitative parameters and their occurrence in the patient group. Synthesis was performed by adding data to a flow diagram and a summarizing overview that assessed the stability of polytrauma patients according to the pathophysiological pathways.

      Results

      Systematic review

      The initial systematic search using MeSH criteria yielded 1550 publications deemed relevant to the above topics (coagulopathy (n = 37), haemorrhage/shock (n = 7), hypothermia (n = 11), soft tissue injury (n = 24)). Fig. 2 shows the flowchart of all included and excluded publications. After the exclusion of duplicates or studies that did not include the parameters of this systematic review, 68 remained; a further 8 papers included data to different topics. The results are presented in Table 1. Publications included for each topic are summarized in Table 2.
      Fig 3:
      Fig. 3Identification of thresholds in this review process.
      Table 1Quantitative values of the vicious cycle classified to stability of the patient.
      PATHOGENETIC PATHWAYSPARAMETERSTABLEBORDERLINEUNSTABLEIN EXTREMISREFERENCES
      HaemorrhageSystolic Blood Pressure>100mmHg≤100 mmHg / ≥90mmHg<90 mmHg/Need for vasopressorsUncontrollable haemorrhage or hypotension non-responsible to therapy[
      • Mutschler M.
      • Nienaber U.
      • Brockamp T.
      • Wafaisade A.
      • Wyen H.
      • Peiniger S.
      • Paffrath T.
      • Bouillon B.
      • Maegele M.
      • TraumaRegister D.G.U.
      A critical reappraisal of the ATLS classification of hypovolaemic shock: does it really reflect clinical reality?.
      ]
      Lactate<2 mmol/l≥2 mmol/l / ≤4 mmol/l>4 mmol/l[
      • Pape H.C.
      • Halvachizadeh S.
      • Leenen L.
      • Velmahos G.D.
      • Buckley R.
      • Giannoudis P.V.
      Timing of major fracture care in polytrauma patients - An update on principles, parameters and strategies for 2020.
      ]
      Haemoglobin>9 g/dl≤9 g/dl/ ≥7 g/dl<7 g/dl[
      • Tanner L.
      • Neef V.
      • Raimann F.J.
      • Störmann P.
      • Marzi I.
      • Lefering R.
      • Zacharowski K.
      • Piekarski F.
      Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®.
      ,
      • Inaba K.
      • Teixeira P.G.
      • Shulman I.
      • Nelson J.
      • Lee J.
      • Salim A.
      • Brown C.
      • Demetriades D.
      • Rhee P.
      The impact of uncross-matched blood transfusion on the need for massive transfusion and mortality: analysis of 5,166 uncross-matched units.
      ,
      • Doklestić K.
      • Djukić V.
      • Ivančević N.
      • Gregorić P.
      • Lončar Z.
      • Stefanović B.
      • Jovanović D.
      • Karamarković A.
      Severe Blunt Hepatic Trauma in Polytrauma Patient - Management and Outcome.
      ,
      • Mitra B.
      • Tullio F.
      • Cameron P.A.
      • Fitzgerald M.
      Trauma patients with the 'triad of death'.
      ,
      • Hilbert P.
      • Hofmann G.O.
      • Lefering R.
      • Struck MF.
      Schockraumhämoglobin. Prädiktor für eine Gerinnungsstörung beim Traumapatienten [Trauma bay haemoglobin level. Predictor of coagulation disorder in major trauma].
      ,
      • Hirschmann M.T.
      • Uike K.N.
      • Kaufmann M.
      • Huegli R.
      • Regazzoni P.
      • Gross T.
      Qualitätssicherung interdisziplinärer Polytraumaversorgung. Möglichkeiten und Grenzen retrospektiver Standarderfassung [Quality management of interdisciplinary treatment of polytrauma. Possibilities and limits of retrospective routine data collection].
      ,
      • Frischknecht A.
      • Lustenberger T.
      • Bukur M.
      • Turina M.
      • Billeter A.
      • Mica L.
      • Keel M.
      Damage control in severely injured trauma patients - A ten-year experience.
      ]
      CoagulopathyINR<1.2≥1.2 / <1.5>1.5Not measurable or severe trauma induced coagulopathy[
      • Frischknecht A.
      • Lustenberger T.
      • Bukur M.
      • Turina M.
      • Billeter A.
      • Mica L.
      • Keel M.
      Damage control in severely injured trauma patients - A ten-year experience.
      ,
      • Stettler G.R.
      • Moore E.E.
      • Nunns G.R.
      • Chandler J.
      • Peltz E.
      • Silliman C.C.
      • Banerjee A.
      • Sauaia A.
      Rotational thromboelastometry thresholds for patients at risk for massive transfusion.
      ,
      • David J.S.
      • Friggeri A.
      • Vacheron C.H.
      • Bouzat P.
      • Fraticelli L.
      • Claustre C.
      • Maegele M.
      • Inaba K.
      Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy?.
      ,
      • Bilgiç İ.
      • Gelecek S.
      • Akgün A.E.
      • Özmen M.M.
      Evaluation of liver injury in a tertiary hospital: a retrospective study.
      ,
      • Kautza B.C.
      • Cohen M.J.
      • Cuschieri J.
      • Minei J.P.
      • Brackenridge S.C.
      • Maier R.V.
      • Harbrecht B.G.
      • Moore E.E.
      • Billiar T.R.
      • Peitzman A.B.
      • Sperry J.L.
      Inflammation and the Host Response to Injury Investigators. Changes in massive transfusion over time: an early shift in the right direction?.
      ,
      • Torabi M.
      • Mazidi Sharaf Abadi F.
      • Baneshi M.R
      Blood sugar changes and hospital mortality in multiple trauma.
      ,
      • Stettler G.R.
      • Sumislawski J.J.
      • Moore E.E.
      • Nunns G.R.
      • Kornblith L.Z.
      • Conroy A.S.
      • Callcut R.A.
      • Silliman C.C.
      • Banerjee A.
      • Cohen M.J.
      • Sauaia A.
      Citrated kaolin thrombelastography (TEG) thresholds for goal-directed therapy in injured patients receiving massive transfusion.
      ,
      • Holcomb J.B.
      • Zarzabal L.A.
      • Michalek J.E.
      • Kozar R.A.
      • Spinella P.C.
      • Perkins J.G.
      • Matijevic N.
      • Dong J.F.
      • Pati S.
      • Wade C.E.
      • Group Trauma Outcomes
      • Holcomb J.B.
      • Wade C.E.
      • Cotton B.A.
      • Kozar R.A.
      • Brasel K.J.
      • Vercruysse G.A.
      • MacLeod J.B.
      • Dutton R.P.
      • Hess J.R.
      • Duchesne J.C.
      • McSwain N.E.
      • Muskat P.C.
      • Johannigamn J.A.
      • Cryer H.M.
      • Tillou A.
      • Cohen M.J.
      • Pittet J.F.
      • Knudson P.
      • DeMoya M.A.
      • Schreiber M.A.
      • Tieu B.H.
      • Brundage S.I.
      • Napolitano L.M.
      • Brunsvold M.E.
      • Sihler K.C.
      • Beilman G.J.
      • Peitzman A.B.
      • Zenati M.S.
      • Sperry J.L.
      • Alarcon L.H.
      • Croce M.A.
      • Minei J.P.
      • Steward R.M.
      • Cohn S.M.
      • Michalek J.E.
      • Bulger E.M.
      • Nunez T.C.
      • Ivatury R.R.
      • Meredith J.W.
      • Miller P.R.
      • Pomper G.J.
      • Marin B
      Increased platelet:RBC ratios are associated with improved survival after massive transfusion.
      ,
      • Kutcher M.E.
      • Kornblith L.Z.
      • Narayan R.
      • Curd V.
      • Daley A.T.
      • Redick B.J.
      • Nelson M.F.
      • Fiebig E.W.
      • Cohen M.J.
      A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices.
      ,
      • Mitra B.
      • Tullio F.
      • Cameron P.A.
      • Fitzgerald M.
      Trauma patients with the 'triad of death'.
      ,
      • Coccolini F.
      • Ceresoli M.
      • McGreevy D.T.
      • Sadeghi M.
      • Pirouzram A.
      • Toivola A.
      • Skoog P.
      • Idoguchi K.
      • Kon Y.
      • Ishida T.
      • Matsumura Y.
      • Matsumoto J.
      • Reva V.
      • Maszkowski M.
      • Fugazzola P.
      • Tomasoni M.
      • Cicuttin E.
      • Ansaloni L.
      • Zaghi C.
      • Sibilla M.G.
      • Cremonini C.
      • Bersztel A.
      • Caragounis E.C.
      • Falkenberg M.
      • Handolin L.
      • Oosthuizen G.
      • Szarka E.
      • Manchev V.
      • Wannatoop T.
      • Chang S.W.
      • Kessel B.
      • Hebron D.
      • Shaked G.
      • Bala M.
      • Ordoñez C.A.
      • Hibert-Carius P.
      • Chiarugi M.
      • Nilsson K.F.
      • Larzon T.
      • Gamberini E.
      • Agnoletti V.
      • Catena F.
      • Hörer T.M.
      Aortic balloon occlusion (REBOA) in pelvic ring injuries: preliminary results of the ABO Trauma Registry.
      ,
      • Johansson P.I.
      • Sørensen A.M.
      • Perner A.
      • Welling K.L.
      • Wanscher M.
      • Larsen C.F.
      • Ostrowski S.R.
      Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study.
      ,
      • Hilbert-Carius P.
      • Hofmann G.
      • Stuttmann R.
      Hämoglobinorientierter und gerinnungsfaktorbasierter Algorithmus": effekt auf Transfusionsbedarf und standardisierte Mortalitätsrate bei massivtransfusionspflichtigen Traumapatienten [Hemoglobin-oriented and coagulation factor-based algorithm : effect on transfusion needs and standardized mortality rate in massively transfused trauma patients].
      ,
      • Holcomb J.B.
      • Minei K.M.
      • Scerbo M.L.
      • Radwan Z.A.
      • Wade C.E.
      • Kozar R.A.
      • Gill B.S.
      • Albarado R.
      • McNutt M.K.
      • Khan S.
      • Adams P.R.
      • McCarthy J.J.
      • Cotton B.A.
      Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients.
      ,
      • Kashuk J.L.
      • Moore E.E.
      • Sawyer M.
      • Wohlauer M.
      • Pezold M.
      • Barnett C.
      • Biffl W.L.
      • Burlew C.C.
      • Johnson J.L.
      • Sauaia A.
      Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma.
      ,
      • Hilbert-Carius P.
      • Hofmann G.O.
      • Lefering R.
      • Stuttmann R.
      • Struck MF
      Clinical presentation and blood gas analysis of multiple trauma patients for prediction of standard coagulation parameters at emergency department arrival.
      ,
      • O'Connor J.V.
      • DuBose J.J.
      • Scalea T.M.
      Damage-control thoracic surgery: management and outcomes.
      ,
      • Cotton B.A.
      • Faz G.
      • Hatch Q.M.
      • Radwan Z.A.
      • Podbielski J.
      • Wade C.
      • Kozar R.A.
      • Holcomb J.B.
      Rapid thrombelastography delivers real-time results that predict transfusion within 1 h of admission.
      ,
      • Peltan I.D.
      • Vande Vusse L.K.
      • Maier R.V.
      • Watkins T.R
      An International Normalized Ratio-Based Definition of Acute Traumatic Coagulopathy Is Associated With Mortality, Venous Thromboembolism, and Multiple Organ Failure After Injury.
      ,
      • Lui C.T.
      • Wong O.F.
      • Tsui K.L.
      • Kam C.W.
      • Li S.M.
      • Cheng M.
      • Leung K.K.G.
      Predictive model integrating dynamic parameters for massive blood transfusion in major trauma patients: the Dynamic MBT score.
      ,
      • Hildebrand F.
      • Lefering R.
      • Andruszkow H.
      • Zelle B.A.
      • Barkatali B.M.
      • Pape H.C.
      Development of a scoring system based on conventional parameters to assess polytrauma patients: polyTrauma Grading Score (PTGS).
      ,
      • Leemann H.
      • Lustenberger T.
      • Talving P.
      • Kobayashi L.
      • Bukur M.
      • Brenni M.
      • Brüesch M.
      • Spahn D.R.
      • Keel M.J.
      The role of rotation thromboelastometry in early prediction of massive transfusion.
      ]
      ROTEM
      EXTEM CT<60s≥60 s / ≤80s>80s[
      • Stettler G.R.
      • Moore E.E.
      • Nunns G.R.
      • Chandler J.
      • Peltz E.
      • Silliman C.C.
      • Banerjee A.
      • Sauaia A.
      Rotational thromboelastometry thresholds for patients at risk for massive transfusion.
      ,
      • David J.S.
      • Friggeri A.
      • Vacheron C.H.
      • Bouzat P.
      • Fraticelli L.
      • Claustre C.
      • Maegele M.
      • Inaba K.
      Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy?.
      ,
      • Tauber H.
      • Innerhofer P.
      • Breitkopf R.
      • Westermann I.
      • Beer R.
      • El Attal R.
      • Strasak A.
      • Mittermayr M.
      Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the 'Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study'.
      ,
      • Hagemo J.S.
      • Christiaans S.C.
      • Stanworth S.J.
      • Brohi K.
      • Johansson P.I.
      • Goslings J.C.
      • Naess P.A.
      • Gaarder C.
      Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study.
      ,
      • Davenport R.
      • Manson J.
      • De'Ath H.
      • Platton S.
      • Coates A.
      • Allard S.
      • Hart D.
      • Pearse R.
      • Pasi K.J.
      • MacCallum P.
      • Stanworth S.
      • Brohi K.
      Functional definition and characterization of acute traumatic coagulopathy.
      ,
      • Schöchl H.
      • Nienaber U.
      • Hofer G.
      • Voelckel W.
      • Jambor C.
      • Scharbert G.
      • Kozek-Langenecker S.
      • Solomon C.
      Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate.
      ,
      • Schöchl H.
      • Solomon C.
      • Traintinger S.
      • Nienaber U.
      • Tacacs-Tolnai A.
      • Windhofer C.
      • Bahrami S.
      • Voelckel W.
      Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury.
      ,
      • Leemann H.
      • Lustenberger T.
      • Talving P.
      • Kobayashi L.
      • Bukur M.
      • Brenni M.
      • Brüesch M.
      • Spahn D.R.
      • Keel M.J.
      The role of rotation thromboelastometry in early prediction of massive transfusion.
      ,
      • Schöchl H.
      • Cotton B.
      • Inaba K.
      • Nienaber U.
      • Fischer H.
      • Voelckel W.
      • Solomon C.
      FIBTEM provides early prediction of massive transfusion in trauma.
      ]
      EXTEM MCF>60mm≤60 mm / ≥45mm<45mm
      FIBTEM MCF>12mm≤12 mm / ≥5mm<5mm
      TEG
      ACT<110s≥110 s / ≤128s>128s[
      • Stettler G.R.
      • Moore E.E.
      • Nunns G.R.
      • Chandler J.
      • Peltz E.
      • Silliman C.C.
      • Banerjee A.
      • Sauaia A.
      Rotational thromboelastometry thresholds for patients at risk for massive transfusion.
      ,
      • Cotton B.A.
      • Faz G.
      • Hatch Q.M.
      • Radwan Z.A.
      • Podbielski J.
      • Wade C.
      • Kozar R.A.
      • Holcomb J.B.
      Rapid thrombelastography delivers real-time results that predict transfusion within 1 h of admission.
      ,
      • Holcomb J.B.
      • Minei K.M.
      • Scerbo M.L.
      • Radwan Z.A.
      • Wade C.E.
      • Kozar R.A.
      • Gill B.S.
      • Albarado R.
      • McNutt M.K.
      • Khan S.
      • Adams P.R.
      • McCarthy J.J.
      • Cotton B.A.
      Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients.
      ,
      • Kashuk J.L.
      • Moore E.E.
      • Sawyer M.
      • Wohlauer M.
      • Pezold M.
      • Barnett C.
      • Biffl W.L.
      • Burlew C.C.
      • Johnson J.L.
      • Sauaia A.
      Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma.
      ,
      • Einersen P.M.
      • Moore E.E.
      • Chapman M.P.
      • Moore H.B.
      • Gonzalez E.
      • Silliman C.C.
      • Banerjee A.
      • Sauaia A.
      Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion.
      ,
      • Cotton B.A.
      • Harvin J.A.
      • Kostousouv V.
      • Minei K.M.
      • Radwan Z.A.
      • Schöchl H.
      • Wade C.E.
      • Holcomb J.B.
      • Matijevic N.
      Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration.
      ]
      MA>60mm≤60 mm / ≥55mm<55mm
      LY30<3%≥3% / ≤5%>5%
      HypothermiaBody Temperature (°C)>35 °C≤35 °C / ≥ 33 °C<33 °CPersistent hypothermia or difficult rewarming[
      • Ireland S.
      • Endacott R.
      • Cameron P.
      • Fitzgerald M.
      • Paul E.
      The incidence and significance of accidental hypothermia in major trauma–a prospective observational study.
      ,
      • Weuster M.
      • Brück A.
      • Lippross S.
      • Menzdorf L.
      • Fitschen-Oestern S.
      • Behrendt P.
      • Iden T.
      • Höcker J.
      • Lefering R.
      • Seekamp A.
      • Klüter T.
      • TraumaRegister D.G.U.
      Epidemiology of accidental hypothermia in polytrauma patients: an analysis of 15,230 patients of the TraumaRegister DGU.
      ,
      • Aitken L.M.
      • Hendrikz J.K.
      • Dulhunty J.M.
      • Rudd M.J.
      Hypothermia and associated outcomes in seriously injured trauma patients in a predominantly sub-tropical climate.
      ,
      • Wang H.E.
      • Callaway C.W.
      • Peitzman A.B.
      • Tisherman S.A.
      Admission hypothermia and outcome after major trauma.
      ,
      • Beilman G.J.
      • Blondet J.J.
      • Nelson T.R.
      • Nathens A.B.
      • Moore F.A.
      • Rhee P.
      • Puyana J.C.
      • Moore E.E.
      • Cohn S.M.
      Early hypothermia in severely injured trauma patients is a significant risk factor for multiple organ dysfunction syndrome but not mortality.
      ,
      • Martin R.S.
      • Kilgo P.D.
      • Miller P.R.
      • Hoth J.J.
      • Meredith J.W.
      • Chang M.C.
      Injury-associated hypothermia: an analysis of the 2004 National Trauma Data Bank.
      ,
      • Mommsen P.
      • Andruszkow H.
      • Frömke C.
      • Zeckey C.
      • Wagner U.
      • van Griensven M.
      • Frink M.
      • Krettek C.
      • Hildebrand F.
      Effects of accidental hypothermia on posttraumatic complications and outcome in multiple trauma patients.
      ,
      • Shafi S.
      • Elliott A.C.
      • Gentilello L.
      Is hypothermia simply a marker of shock and injury severity or an independent risk factor for mortality in trauma patients?.
      ,
      • Trentzsch H.
      • Huber-Wagner S.
      • Hildebrand F.
      • Kanz K.G.
      • Faist E.
      • Piltz S.
      • Lefering R.
      • TraumaRegistry D.G.U.
      Hypothermia for prediction of death in severely injured blunt trauma patients.
      ,
      • Frischknecht A.
      • Lustenberger T.
      • Bukur M.
      • Turina M.
      • Billeter A.
      • Mica L.
      • Keel M.
      Damage control in severely injured trauma patients - A ten-year experience.
      ,
      • Mitra B.
      • Tullio F.
      • Cameron P.A.
      • Fitzgerald M.
      Trauma patients with the 'triad of death'.
      ]
      Soft tissue injuriesTraumatic Brain Injury
      ICP<15mmHg≥15 mmHg / ≤20mmHg>20mmHgHerniation[
      • Clifton G.L.
      • Miller E.R.
      • Choi S.C.
      • Levin H.S.
      Fluid thresholds and outcome from severe brain injury.
      ,
      • Jiang J.Y.
      • Gao G.Y.
      • Li W.P.
      • Yu M.K.
      • Zhu C.
      Early indicators of prognosis in 846 cases of severe traumatic brain injury.
      ,
      • Juul N.
      • Morris G.F.
      • Marshall S.B.
      • Marshall L.F.
      Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial.
      ,
      • Marmarou A.
      • Saad A.
      • Aygok G.
      • Rigsbee M.
      Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome.
      ,
      • Ratanalert S.
      • Phuenpathom N.
      • Saeheng S.
      • Oearsakul T.
      • Sripairojkul B.
      • Hirunpat S.
      ICP threshold in CPP management of severe head injury patients.
      ,
      • Lannoo E.
      • Van Rietvelde F.
      • Colardyn F.
      • Lemmerling M.
      • Vandekerckhove T.
      • Jannes C.
      • De Soete G.
      Early predictors of mortality and morbidity after severe closed head injury.
      ,
      • Chambers I.R.
      • Treadwell L.
      • Mendelow A.D.
      Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients.
      ,
      • Balestreri M.
      • Czosnyka M.
      • Steiner L.A.
      • Schmidt E.
      • Smielewski P.
      • Matta B.
      • Pickard J.D.
      Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?.
      ,
      • Schreiber M.A.
      • Aoki N.
      • Scott B.G.
      • Beck J.R.
      Determinants of mortality in patients with severe blunt head injury.
      ]
      CCP>70mmHg≤70 mmHg / ≥60mmHg<60mmHg
      Midline shiftNo<5mm≥5mm
      Thoracic and abdominal trauma
      TTSS
      Points≤5>5 / <8≥8Deformation of the thoracic wall and respiratory decompensation[
      • Martínez Casas I.
      • Amador Marchante M.A.
      • Paduraru M.
      • Fabregues Olea A.I.
      • Nolasco A.
      • Medina J.C
      Thorax Trauma Severity Score: is it reliable for Patient's Evaluation in a Secondary Level Hospital?.
      ,
      • Daurat A.
      • Millet I.
      • Roustan J.P.
      • Maury C.
      • Taourel P.
      • Jaber S.
      • Capdevila X.
      • Charbit J.
      Thoracic Trauma Severity score on admission allows to determine the risk of delayed ARDS in trauma patients with pulmonary contusion.
      ,
      • Aukema T.S.
      • Beenen L.F.
      • Hietbrink F.
      • Leenen L.P.
      Validation of the Thorax Trauma Severity Score for mortality and its value for the development of acute respiratory distress syndrome.
      ,
      • Kumari M.
      • Mathur P.
      • Aggarwal R.
      • Madan K.
      • Sagar S.
      • Gupta A.
      • Khurana S.
      • Sreenivas V.
      • Kumar S.
      Changes in extracellular cytokines in predicting disease severity and final clinical outcome of patients with blunt chest trauma.
      ,
      • Mommsen P.
      • Zeckey C.
      • Andruszkow H.
      • Weidemann J.
      • Frömke C.
      • Puljic P.
      • van Griensven M.
      • Frink M.
      • Krettek C.
      • Hildebrand F.
      Comparison of different thoracic trauma scoring systems in regards to prediction of post-traumatic complications and outcome in blunt chest trauma.
      ,
      • Okabe Y.
      Risk factors for prolonged mechanical ventilation in patients with severe multiple injuries and blunt chest trauma: a single center retrospective case-control study.
      ,
      • Seok J.
      • Cho H.M.
      • Kim H.H.
      • Kim J.H.
      • Huh U.
      • Kim H.B.
      • Leem J.H.
      • Wang I.J.
      Chest Trauma Scoring Systems for Predicting Respiratory Complications in Isolated Rib Fracture.
      ,
      • Subhani S.S.
      • Muzaffar M.S.
      • Khan M.I.
      Comparison of outcome between low and high thoracic trauma severity score in blunt trauma chest patients.
      ,
      • Zahran M.R.
      • Elwahab A.A.E.M.A.
      • El Nasr M.M.A.
      • et al.
      Evaluation of the predictive value of thorax trauma severity score (TTSS) in thoracic-traumatized patients.
      ,
      • Sharma Amit
      • Rathore Shaitan
      • Verma Vijay
      • Yadav Parul
      A study to validate thoracic trauma severity score in chest trauma patients.
      ,
      • Elbaih Hamed
      • Adel
      • Elshapowry Islam
      • Kalil Nancy
      Evaluation of Thoracic Trauma Severity Score in Predicting the Outcome of Isolated Blunt Chest Trauma Patients.
      ,

      E'Rezk, Moataz et al. “Assessment of Isolated Blunt Chest Trauma Patients in Benha University Hospital According to Thoracic Trauma Severity Score.” American Journal of Cardiovascular and Thoracic Surgery (2020): n. pag.

      ]
      Grade0I-II≥III
      Soft tissue injuries

      DC Surgery criteria according to Roberts et al.
      Classification in combination with patient's physiology.
      [
      • Mitra B.
      • Tullio F.
      • Cameron P.A.
      • Fitzgerald M.
      Trauma patients with the 'triad of death'.
      ]
      A diffucult access major vanous injury

      Major liver or combined pancreaticoduodenal injury with haemodynamic instability

      Devascularisation or massive disruption of intra-abdominal organs, such as duodenum, pancreas, pancreatic-duodenal complex

      Uncontrollable haemorrhage

      Need for surgical abdominal or thoracic reconstruction (open abdomen treatment, abdominal or thoracic compartment syndrome, reassessment of the bowel function)
      [
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Stelfox H.T.
      Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review.
      ]
      Musculoskeletal trauma
      Pelvic trauma
      AO/Tile classificationA-BB-C
      Classification in combination with patient's physiology.
      Complex pelvic injury
      Classification in combination with patient's physiology.
      (Hemi)pelvectomy[
      • Burkhardt M.
      • Nienaber U.
      • Pizanis A.
      • Maegele M.
      • Culemann U.
      • Bouillon B.
      • Flohé S.
      • Pohlemann T.
      • Paffrath T.
      • TraumaRegister D.G.U.
      German Pelvic Injury Register of the Deutsche Gesellschaft für Unfallchirurgie. Acute management and outcome of multiple trauma patients with pelvic disruptions.
      ,
      • Burkhardt M.
      • Nienaber U.
      • Krause J.
      • Pizanis A.
      • Moersdorf P.
      • Culemann U.
      • Aghayev E.
      • Paffrath T.
      • Pohlemann T.
      • Holstein J.H.
      • Beckenregister D.G.U.
      TraumaRegister DGU®. Das komplexe Beckentrauma : matching des Beckenregisters DGU mit dem TraumaRegister DGU® [Complex pelvic traumas : data linkage of the German Pelvic Injury Register and the TraumaRegister DGU®].
      ,
      • Burkhardt M.
      • Holstein J.H.
      • Moersdorf P.
      • Kristen A.
      • Lefering R.
      • Pohlemann T.
      • Pizanis A.
      • TraumaRegister D.G.U.
      Proper coding of the Abbreviated Injury Scale: can clinical parameters help as surrogates in estimating blood loss?.
      ]
      Temporary fixation according to MUST criteria
      Classification in combination with patient's physiology.
      [
      • Marmarou A.
      • Saad A.
      • Aygok G.
      • Rigsbee M.
      Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome.
      ]
      Associated vascular injuries

      Severe contaminated wounds

      Severe bone defects

      Complex articular fractures
      [
      • Pfeifer R.
      • Kalbas Y.
      • Coimbra R.
      • Leenen L.
      • Komadina R.
      • Hildebrand F.
      • Halvachizadeh S.
      • Akhtar M.
      • Peralta R.
      • Fattori L.
      • Mariani D.
      • Hasler R.M.
      • Lefering R.
      • Marzi I.
      • Pitance F.
      • Osterhoff G.
      • Volpin G.
      • Weil Y.
      • Wendt K.
      • Pape H.C.
      Indications and interventions of damage control orthopedic surgeries: an expert opinion survey.
      ]
      low asterisk Classification in combination with patient's physiology.
      Table 2List of publications considered to define values.
      Hypothermia
      AuthorsTitleJournalYearType StudynOutcomeParameterStatistic
      Ireland et al.The incidence and significance of accidental hypothermia in major trauma–a prospective observational studyResuscitation2011Prospective (Monocenter)732Mortality>35 °C vs. <35 °C5.98% vs. 29.90%
      Weuster et al.Epidemiology of accidental hypothermia in polytrauma patients: An analysis of 15,230 patients of the TraumaRegister DGUJ Trauma Acute Care Surg2016Retrospective (Database)15,230Sepsis36 °C6.40%
      35 °C11%
      34 °C12.10%
      33 °C15.50%
      MOF36 °C20.50%
      35 °C34.60%
      34 °C44.50%
      33 °C56.20%
      Mortality (overall)36 °C9.00%
      35 °C14.30%
      34 °C20.60%
      33 °C32.40%
      Mortality (24 h)36 °C4.40%
      35 °C6.60%
      34 °C10.30%
      33 °C18.80%
      Aitken et al.Hypothermia and associated outcomes in seriously injured trauma patients in a predominantly sub-tropical climateResuscitation2009Retrospective (Database)2182Mortality>35 °C vs. <35 °C11% vs. 40%
      Wang et al.Admission hypothermia and outcome after major traumaCrit Care Med2005Retrospective (Database)38,520Mortality>35 °C vs. ≤35 °C4.4% vs. 26.6%
      Beilmann et al.Early Hypothermia in Severely Injured Trauma Patients Is a significant Risk Factor for Multiple Organ Dysfunction Syndrome but Not MortalityAnn Surg.2009Prospective (Multicenter)359MOF>35 °C vs. <35 °C9% vs. 21%
      Mortality>35 °C vs. <35 °C12% vs. 16%
      Martin et al.Injury-associated hypothermia: an analysis of the 2004 National Trauma Data BankShock2005Retrospective (Database)7,01,491Mortality>35 °C vs. ≤35 °C3% vs 25.5%
      Mommsen et al.Effects of accidental hypothermia on posttraumatic complications and outcome in multiple trauma patientsInjury2013Retrospective (Monocenter)310SIRS≥35 °C vs. <35 °C73.5% vs. 84.2%
      Sepsis≥35 °C vs. <35 °C39.3% vs. 49.1%
      MOF≥35 °C vs. <35 °C6.6% vs. 9.6%
      Mortality≥35 °C vs. <35 °C19.9% vs. 28.0%
      Shafi et al.Is hypothermia simply a marker of shock and injury severity or an independent risk factor for mortality in trauma patients? Analysis of a large national trauma registryJ Trauma2005Retrospective (Database)38,550Any Complication≥35 °C vs. <35 °C11% vs. 25%
      Trentzsch et al.Hypothermia for prediction of death in severely injured blunt trauma patientsShock2012Retrospective (Database)5197MTP≥35 °C vs. <35 °C6.3% vs. 17.0%
      Sepsis≥35 °C vs. <35 °C10.6% vs. 17.5%
      MOF≥35 °C vs. <35 °C28.8% vs. 53.5%
      Mortality (24 h)≥35 °C vs. <35 °C5.6% vs. 15.6%
      Mortality (overall)≥35 °C vs. <35 °C13.7% vs. 29.2%
      Frischknecht et al.Damage control in severely injured trauma patients – A ten-year experienceJ Emerg Trauma Shock2011Retrospective (Monocenter)319Mortality (72 h)Survivor vs. Non-Survivor ( °C)35.06 ± 0.10 vs. 33.81 ± 0.22
      Mitra et al.Trauma patients with the 'triad of death'Emerg Med J.2012Retrospective (Monocenter)90MortalitySurvivors ( °C)33.2 ± 1.5
      Non-Survivors ( °C)32.8 ± 1.4
      Haemoglobin
      AuthorsTitleJournalYearType StudynOutcomeParameterStatistic
      Tanner et al.Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®Eur J Trauma Emerg Surg.2022Retrospective (Database)67,595SepsisHb ≥92.68%
      Hb 7–85.65%
      Hb < 77.29%
      ShockHb ≥96.75%
      Hb 7–827,24%
      Hb < 736.72%
      MOFHb ≥98.46%
      Hb 7–820.86%
      Hb < 724.69%
      MTPHb ≥90.59%
      Hb 7–87.18%
      Hb < 713.49%
      Dead in ERHb ≥90.73%
      Hb 7–87.18%
      Hb < 716.91%
      Mortality (24 h)Hb ≥94.97%
      Hb 7–823.00%
      Hb < 740.77%
      MortalityHb ≥911.19%
      Hb 7–839.14%
      Hb < 755.29%
      Kenji et al.The impact of uncross-matched blood transfusion on the need for massive transfusion and mortality: analysis of 5166 uncross-matched unitsJ Trauma2008Retrospective (Multicenter)25,599MTPHb ≥89.00%
      HB <821.40%
      Doklestic et al.Severe Blunt Hepatic Trauma in Polytrauma Patient - Management and OutcomeSerbian archives of entire2015Retrospective (Monocenter)70MortalitySurvivor vs. Non-Survivor (Hb)9.86 ± 1.28 vs. 8.1.3 ± 1.56
      medicineMortality (30d)Hb <1012.30%
      Hb 9–1034.60%
      Hb 8–925.30%
      Hb 7–833.30%
      Hb ≤726.10%
      Haemoglobin drop (first 2 h)
      MTP≤2 Hb1.80%
      >2 - ≤3.9 Hb5.60%
      ≥4 Hb20.60%
      Mortality (30d)≤2 Hb12.30%
      >2 - ≤3.9 Hb13.60%
      ≥4 Hb30.80%
      Mitra et al.Trauma patients with the ‘triad of death’Emerg Med J.2012Retrospective (Monocenter)90MortalitySurvivors vs. Non-Survivors
      Hb98.3 ± 22.1 vs. 83.5 ± 22.4
      Hilbert et al.Trauma bay haemoglobin level. Predictor of coagulation disorder in major traumaUnfallchirurg2015Retrospective (Monocenter)425MTPReceiving MTP
      Hb7.98 (SD 3.8)
      Hirschmann et al.Quality management of interdisciplinary treatment of polytrauma. Possibilities and limits of retrospective routine data collectionAnaesthesist2007Retrospective (Monocenter)172MortalitySurvivor (Hb)11 ± 2.8
      Non-Survivor (Hb)8.8 ± 3.5
      Frischknecht et al.Damage control in severely injured trauma patients – A ten-year experienceJ Trauma2011Retrospective (Monocenter)319Mortality (72 h)Survivor vs. Non-Survivor (°C)
      Hb9.16 ± 0.13 vs. 9.06 ± 0.47
      Independent for early Mortality
      Hb < 0.7 g/dlp = 0.045
      INR
      Frischknecht et al.Damage control in severely injured trauma patients - A ten-year experienceJ Emerg Trauma Shock2011Retrospective (Monocenter)319Mortality (72 h)All patients (INR)1.25 ± 0.02
      Early survivors (INR)1.23 ± 0.02
      Early deaths (INR)1.42 ± 0.06
      Stettler et al.Rotational thromboelastometry thresholds for patients at risk for massive transfusionJ Surg Res2018Prospective (Monocenter)222Indication for MTPNo MTP1.1 (1.04–1.23)
      MTP1.72 (1.33–2.07)
      David et al.Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy?Eur J Trauma Emerg Surg.2022Retrospective (Monocenter)1076TIC defined by Rotem CT (s)INR
      10.0–90.9No TIC1.1
      91–130Moderate TIC1.5
      131–200Severe TIC1.9
      >200Major TIC3.4
      Bilgic et al.Evaluation of liver injury in a tertiary hospital: a retrospective studyTurkish journal of trauma & emergency surgery2014Retrospective (Moonocenter)82MortalitySurvivors (INR)1.1 (0.95–1.68)
      Non-Survivors1.56 (1.02–3.75)
      Kautza et al.Changes in Massive Transfusion Over Time: An Early Shift In The Right Direction?J Trauma Acute Care Surge2012Prospective (Multicenter)526Receiving MTPEarly (INR)1.68 ± 1
      Recent (INR)1.74 ± 1
      Torabi et al.Blood sugar changes and hospital mortality in multiple traumaAm J Emerg Med.2018Retrospective (Monocenter)280MortalitySurvivors1.09 ± 0.2
      Non-Survivors1.81 ± 1.55
      Stettler et al.Citrated kaolin thrombelastography (TEG) thresholds for goal-directed therapy in injured patients receiving massive transfusionJ Trauma Acute Care Surg.2018Prospective (Multicenter)825Indication for MTP/No MTP1.1 (1–1.2)
      Threshold for MTPMTP1.4 (1.3–1.8)
      INR >1.3
      Sensitivity66.67%
      Specificity88.20%
      PPV46.15%
      NPV94.58%
      Holcomb et al.Increased platelet:RBC ratios are associated with improved survival after massive transfusionJ Trauma2011Retrospective (Multicenter)2312Receiving MTPMTP1.6 ± 0.9
      Kutcher et al.A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practicesJAMA Surg.2013Prospective (Monocenter)174Receiving MTPMTP1.3 (1.2–1.6)
      Mitra et al.Trauma patients with the 'triad of death'Emerg Med J.2012Retrospective (Monocenter)90MortalitySurvivors2.1 ± 0.4
      Non-Survivors4.0 ± 2.8
      Coccolini et al.Aortic balloon occlusion (REBOA) in pelvic ring injuries: preliminary results of the ABO Trauma RegistryUpdates Surg.2020Retrospective (DGU Database)72Early mortality (24 h)Survivor1.46
      Non-Survivor2.42
      Johansson et al.Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational studyCrit Care2011Observational Cohort (Monocenter)80ACoTSNormal1.1 (1.1–1.1)
      (acute coagulopathy of trauma shock)ACoTS1.3 (1.3–1.5)
      Hilbert-Carius et al.„Hämoglobinorientierter und gerinnungsfaktorbasierter Algorithmus“Anaesthesist2015Retrospective (Monocenter)86Receiving MTPEarly1.72
      Recent1.77
      Holcomb et al.Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patientsAnn Surg.2012Retrospective (Monocenter)1974Prediction MTPMTP>1.5
      Kashuk et al.Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of traumaAnn surg.2010Retrospective (Monocenter)61Receiving Transfusion<5 RBC`s / 6h1.17
      5–9 RBC`s / 6h1.46
      MTP / 6h2.24
      Hilbert-Carius et al.Clinical presentation and blood gas analysis of multiple trauma patients for prediction of standard coagulation parameters at emergency department arrivalAnaesthesist2016Retrospective (DGU Database)40.129MTPMTP1.81
      Connor et al.Damage-control thoracic surgery: Management and outcomesJ Trauma Acute Care Surg.2014Retrospective (Database)44Undergoing DOCINR, mean (SD)1.7 (0.7)
      INR >= 2 (%)39%
      Cotton et al.Rapid thrombelastography delivers real-time results that predict transfusion within 1 h of admissionJ Trauma2011Retrospective (Database)272MTPNo MTP1.16
      MTP1.65
      Peltan et al.An International Normalized Ratio-Based Definition of Acute Traumatic Coagulopathy Is Associated With Mortality, Venous Thromboembolism, and Multiple Organ Failure After InjuryCrit Care Med.2015Prospective observational (Multicenter)1031Mortality/MTPComplicationINR ≤1.2
      In-hospital mortality11.10%
      Overall Mortality2.70%
      MTP17%
      INR >1.2
      In-hospital mortality18.50%
      Overall6.00%
      Massive transfusion32.20%
      INR ≤1.5
      In-hospital mortality11.70%
      Overall2.80%
      Massive transfusion19.10%
      INR >1.5
      In-hospital mortality26.50%
      Overall10.10%
      Massive transfusion45.20%
      Lui et al.Predictive model integrating dynamic parameters for massive blood transfusion in major trauma patients: The Dynamic MBT scoreAM J Emerg Med2018Retrospective (Database)4991Mortality / MTPINRMortality
      ≤1.110.30%
      1.122.80%
      1.233.30%
      1.348.30%
      1.459.10%
      ≥1.555.20%
      INRMTP
      ≤1.12%
      1.17.30%
      1.211.60%
      1.318.30%
      1.422.70%
      ≥1.519%
      Hildebrand et al.Development of a scoring system based on conventional parameters to assess polytrauma patients: PolyTrauma Grading Score (PTGS)Injury2015Retrospective (Database)11,436MortalityINRMortality
      <1.45.10%
      1.4–2.017.90%
      Leemann et al.The role of rotation thromboelastometry in early prediction of massive transfusionJ Trauma2010Retrospective (Monocenter)53MTPINR
      No-MTP1.22
      MTP1.46
      ROTEM
      Stettler et al.Rotational thromboelastometry thresholds for patients at risk for massive transfusionJ Surg Res.2018Prospective (Monocenter)222Indication for MTPEXTEMCT (s)
      No MTP64 (56–75)
      MTP87 (67.25–118.3)
      EXTEMMCF (mm)
      No MTP59 (54–64)
      MTP42 (24.75–52.75)
      FIBTEMMCF (mm)
      No MTP13 (10–16)
      MTP5 (3–9)
      EXTEM CT >78.5s
      Sensitivity58.33%
      Specificity81.62%
      PPV42.98%
      NPV57.74%
      David et al.Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy?Eur J Trauma merg Surg.2022Retrospective (Monocenter)1076TIC defined by a) ROTEM CT (s) b) INR
      a) CT (s)EXTEMMCF (mm)
      10.0–90.9No TIC60
      91–130Moderate TIC51
      131–200Severe TIC42
      >200Major TIC21
      FIBTEMMCF (mm)
      No TIC12
      Moderate TIC5
      Severe TIC3
      Major TIC0
      Mortality 24 h (OR)
      No TIC
      Moderate TIC3.2
      Severe TIC11.8
      Major TIC86.5
      b) INREXTEMMCF (mm)
      0.80–1.20No TIC61
      Moderate TIC55
      1.91–3.00Severe TIC40
      >3.00Major TIC18
      CT (s)
      No TIC61
      Moderate TIC76
      Severe TIC169
      Major TIC271
      FIBTEMMCF (mm)
      No TIC12
      Moderate TIC8
      Severe TIC0
      Major TIC0
      Mortality 24 h (OR)
      No TIC
      Moderate TIC2.7
      Severe TIC20.1
      Major TIC49.7
      Tauber et al.Prevalence and impact of abnormal ROTEM assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’BR J Anaesth.2011Prospective (Monocenter)403Mortality (thresholds)ROTEMMortality threshold
      EXTEM MCF45 mm (25.4% vs. 9.4%)
      EXTEM CT100 s (45.5% vs. 8.4%)
      EXTEM CFT200 s (27% vs. 8.7%)
      FIBTEM MCF7 mm (21% vs. 9%)
      Maximum sum of sensitivity & specificity (AUC 0.8)EXTEM
      EXTEM MCF46mm
      EXTEM CT91s
      EXTEM CFT218s
      Hagemo et al.Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation studyCrit Care2015Prospective (Multicenter)808CoagulopathyEXTEM CT >94s
      MTP ThresholdsDetection rate28.9
      FPR8.8
      PPV16.5
      NPV95.5
      Davenport et al.Functional definition and characterization of acute traumatic coagulopathyCrit Care Med2011Prospective (Monocenter)325MTPCA5≤35mm
      Detection rate71.40%
      FPR15.30%
      PPV10.20%
      NPV99.20%
      CT >94s
      Detection rate28.60%
      FPR12.20%
      PPV5.40%
      NPV98.10%
      a-angle <65°
      Detection rate42.90%
      FPR10.10%
      PPV9.40%
      NPV98.50%
      Schöchl et al.Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrateCrit Care2010Retrospective (Monocenter)131Mortality (threshold)FIBTEM MCF<10 mm
      EXTEM CT>1.5x normal
      Schöchl et al.Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injuryJ Neurotrauma2011Retrospective (Monocenter)67MortalityEXTEM CT>80s
      Survivors0.2
      Non-Survivors0.591
      EXTEM MCF<50mm
      Survivors0.116
      Non-Survivors0.409
      FIBTEM MCF <9mm
      Survivors0.136
      Non-Survivors0.591
      Independent risc factorFIBTEM MCF <9mm
      Leemann et al.The role of rotation thromboelastometry in early prediction of massive transfusionJ Trauma2010Retrospective (Monocenter)53MTPEXTEM MCF
      No-MTP45.5 ± 2.6
      MTP39.3 ± 2.7
      EXTEM CT
      No-MTP120 ± 16.2
      MTP107.9 ± 10.1
      Schöchl et al.FIBTEM provides early prediction of massive transfusion in traumaCrit Care2011Retrospective323MTPEXTEM CT
      No-MTP67 (56–90)
      MTP91 (73–129)
      EXTEM MCF
      No-MTP57 (53–62)
      MTP48 (41–56)
      FIBTEM MCF
      No-MTP11 (7–14)
      MTP5 (0–7)
      MTP thresholdAUC
      EXTEM CT ≤72s0.71
      EXTEM MCF ≤52mm0.76
      FIBTEM MCF ≤7mm0.84
      MTP
      MTPEXTEM CT91 (73–129)
      EXTEM MCF48 (41–55)
      FIBTEM MCF5 (0–7)
      Non-MTP
      EXTEM CT67 (56–90)
      EXTEM MCF57 (51–62)
      FIBTEM MCF11 (7–14)
      r-TEG
      Stettler et al.Rotational thromboelastometry thresholds for patients at risk for massive transfusionJ Surg Res.2018Prospective (Monocenter)222MTP thresholdsr-TEGACT >128s
      Sensitivity0.5833
      Specificity0.7432
      PPV0.3088
      NPV0.9007
      MA <55mm
      Sensitivity0.7222
      Specificity0.8661
      PPV0.4643
      NPV0.9387
      LY30 >5%
      Sensitivity0.4167
      Specificity0.9399
      PPV0.58
      NPV0.8912
      Cotton et al.Rapid thrombelastography delivers real-time results that predict transfusion within 1 h of admissionJ Trauma2011Prospective (Database)272MTPr-TEGACT (s)
      No MTP113
      MTP121
      MA (mm)
      No MTP65
      MTP61
      LY30 (%)
      No MTP0.6
      MTP0.3
      OR / MTP
      ACT >128s5.15
      Holcomb et al.Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patientsAnn Surg.2012Retrospective (Monocenter)1974MTP thresholdsr-TEGOR
      ACT >128 s1.63
      MA <55 mm3.1
      LY30 >3%1.48
      No TransfusionOR
      ACT <105 s1.59
      MA >68 mm1.69
      LY30 (%)<3%
      Kashuk et al.Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of traumaAnn Surg.2010Prospective (Monocenter)61MTP1 h (r-TEG)Minimal Transfusion (<5RBC/6 h)
      ACT (s)110.75
      MA (mm)57.71
      1hModerate Transfusion 5–9 RBC/6 h)
      ACT (s)124.5
      MA (mm)51.27
      1hMTP
      ACT (s)192.23
      MA (mm)37.63
      Einersen et al.Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusionJ Trauma Acute Care Surg2017Prospective (Monocenter)190MTPr-TEG>4 RBC/h in 6h
      Mortality thresholdsACT (s)139
      LY30 (%)4
      MA (mm)55
      MTP/Death 6h
      ACT (s)128
      LY30 (%)5
      MA (mm)55
      Death 24h
      ACT (s)133
      LY30 (%)5
      MA (mm)54
      MTPACT >128s
      Sensitivity64
      Specificity67
      PPV66
      NPV65
      LY30% >5%
      Sensitivity54
      Specificity91
      PPV86
      NPV66
      MA <55mm
      Sensitivity70
      Specificity82
      PPV79
      NPV73
      Cotton et al.Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administrationJ Trauma Acute Care Surg2012Prospective (Monocenter)1996Mortality (30d)r-TEGMortality
      LY30 ≤3%9%
      LY30 >3%20%
      LY30 >4%35%
      LY30 >5%58%
      LY30 >15%81%
      TBI
      Clifton et al.Fluid thresholds and outcome from severe brain injuryCrit Care Med2002Clinical trial392Outcome poorIndependent variable
      ICP >25 mmHgp = 0.0448
      Jiang et al.Early indicators of prognosis in 846 cases of severe traumatic brain injuryJ Neurotrauma2002Retrospective (Monocenter)846MortalityICPMortality
      ICP <20 mmHg13.76%
      20 < ICP <40 mmHg29.50%
      >40 mmHg40.43%
      Juul et al.Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel TrialJ Neurosurg2000Prospective (Multicenter randomized, double-blind)427Mortality(predetoriation)Mortality
      ICP <20 & CPP ≥6052%
      ICP <20 & CPP ≥7051%
      ICP ≥20 & CPP ≥ 6074%
      ICP ≥20 & CPP ≥ 7073%
      CPP <70 & ICP ≥2087%
      Marmarou et al.Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcomeActa Neurochir Suppl.2005Retrospective (Database)139MortalityMortality
      ICP >20 mmHg38.20%
      MAP <80 mmHg11.60%
      ICP >20mmHg+ MAP <80 mmHg34.90%
      Total25.10%
      Ratanalert et al.ICP Threshold in CPP Management of Severe Head Injury PatientsSurg Neurol.2004Prospective (Monocenter)197Outcome poorOutcome poor
      ICP <20 mmHg17.10%
      ICP ≥20mmHg33.30%
      Lannoo et al.Early predictors of mortality and morbidity after severe closed head injuryJ Neurotrauma2000Retrospective (Monocenter)190MortalityICP
      Survivors18 mmHg
      Nonsurvivors44 mmHg
      CPP
      Survivors61 mmHg
      Non-Survivors44 mmHg
      Midline shift
      Survivors2.3 mm
      Non-Survivors5.5 mm
      Chambers et al.Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patientsJ Neurosurg.2001Clinical trial291TresholdPredicting threshold
      ICPmax35 mmHg
      CPPmin55 mmHg
      Balestreri et al.Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?Acta Neurochir2004Retrospective (Monocenter)96OutcomeOutcomeICP (Median)
      Favourable21 mmHg
      Fatal28 mmHg
      CPP (Median)
      Favourable75 mmHg
      Fatal68 mmHg
      Schreiber et al.Determinants of mortality in patients with severe blunt head injuryArch Surg.2002Prospective (Monocenter)213MortalityOR (95% CI)
      ICP ≥ 15 mmHg4.4 (2.1–9.0)
      Midline shift ≥5mm4.3 (1.8–10.3)
      Thorax
      Casas et al.Thorax Trauma Severity Score: Is it reliable for Patient's Evaluation in a Secondary Level Hospital?Bull Emerg Trauma2016Retrospective (Monocenter)238ComplicationsComplicationsTTSS ≥8
      MortalitySensibility0.66
      Specificity0.94
      PPV0.22
      NPV0.99
      MortalityTTSS ≥8
      Sensibility0.8
      Specificity0.94
      PPV0.22
      NPV0.99
      Daurat et al.Thoracic Trauma Severity score on admission allows to determine the risk of delayed ARDS in trauma patients with pulmonary contusionInjury2016Retrospective (Monocenter)329ARDSTTSS (admission)
      ARDS12 (10–14)
      No ARDS8 (6–10)
      TTSOR
      0–7Reference
      8–12.3.0 (1.3–6.7)
      13–2567.1 (21.7)
      Aukema et al.Validation of the Thorax Trauma Severity Score for mortality and its value for the development of acute respiratory distress syndromeOpen Access Emerg Med.2011Retrospective (Monocenter)712MortalityHigher mortality
      TTSS6–9.
      Kumari et al.Changes in extracellular cytokines in predicting disease severity and final clinical outcome of patients with blunt chest traumaImmunobiology2021Prospective (Monocenter)65Fatal outcomeTTSS
      Fatal6.86 ± 2.27
      Discharged4.72 ± 1.94
      Mommsen et al.Comparison of different thoracic trauma scoring systems in regards to prediction of post-traumatic complications and outcome in blunt chest traumaJ Surg Res.2012Retrospective (Monocenter)278ARDSTTSSARDS
      SIRS≤914.50%
      Sepsis>949.20%
      MODSTTSSSIRS (Cut-off >8)
      Mortality≤947.50%
      >958.80%
      TTSSSepsis (Cut-off >8)
      ≤937.00%
      >944.30%
      TTSSMODS (%)
      ≤95.70%
      >935.30%
      TTSSMortality
      ≤93.80%
      >920.60%
      Okabe et alRisk factors for prolonged mechanical ventilation in patients with severe multiple injuries and blunt chest trauma: a single centre retrospective case-control studyAcute Med Surg.2018Retrospective (Monocenter)133Prolonged mechanical ventilationOR
      TTSS 111.2
      Seok et al.Chest Trauma Scoring Systems for Predicting Respiratory Complications in Isolated Rib FractureJ Surg Res.2019Retrospective (Monocenter)177ComplicationTTSS
      PneumoniaNoncomplication8
      Respiratory failureComplication11
      EmpyemaAUC
      TTSS >90.723
      Subhani et al.Comparison of outcome between low and high thoracic trauma severity score in blunt trauma chest patientsJ Ayub Med Coll Abbottabad2014Prospective (Multicenter)264OutcomeOutcomeLow TTS
      Low TTS
      (0°, 1°, 2°)
      Normal6.10%
      High TTSGood45.40%
      (3°, 4°)Fair19.30%
      Poor0.00%
      Fatal0.00%
      OutcomeHigh TTS
      Normal0.00%
      Good3.10%
      Fair3.40%
      Poor12.90%
      Fatal9.80%
      Zahran et al.Evaluation of the predictive value of thorax trauma severity score (TTSS) in thoracic-traumatized patientsCTS2020Prospective (Multicenter)300OutcomeTTSSMortality
      Mortality0–50%
      6.0–10.00%
      11–15.00%
      16–2016.70%
      21–25100%
      Thresholds
      TTSS ≥7ARDS/
      need for ventilation
      Fair/Poor/fatal prognosisAUC
      TTSS ≥70.998
      Sharma et al.A study to validate thoracic trauma severity score in chest trauma patientsInt Surg J.2020Prospective (Monocenter)110MortalityTTSSMortality
      0–50%
      6.–10.0%
      11–15.03.22%
      16–20.030.76%
      21–25.0n = 0
      Elbaih et al.Evaluation of Thoracic Trauma Severity Score in Predicting the Outcome of Isolated Blunt Chest Trauma PatientsInt. J Surg Med2016Retrospective (Monocenter)30OutcomePoor OutcomeTTSS ≥7
      Sensitivity100%
      Specificity100%
      Rezk et al.Assessment of Isolated Blunt Chest Trauma Patients in Benha University Hospital According to Thoracic Trauma Severity ScoreAJCTS2020Prospective (Monocenter)160Poor OutcomeTTSS ≥8
      /MortalitySensitivity92.30%
      Specificity100%
      Pelvis
      Burkhardt et al.Acute management and outcome of multiple trauma patients with pelvic disruptionsCrit Care2012Retrospective (Database)402MODSAO-TypeA vs. B vs. C
      SepsisMODS (%)22.1% vs. 19.6% vs. 32.9%
      MortalitySepsis (%)3.9% vs. 2.7% vs. 8.1%
      Pelvic Ring fracturesMortality (%)
      AO-Type A5.10%
      AO-Type B6.80%
      AO-Type C10.90%
      Complex15.80%
      Non-complex5.50%
      Burkhardt et al.Complex pelvic traumas: data linkage of the German Pelvic Injury Register and the TraumaRegister DGU®Unfallchirurg2015Retrospective (Database)344MODSPelvic ring fracturesComplex vs. Non-complex
      Sepsis
      MortalityMODS40% vs. 22%
      Sepsis4% vs. 5%
      Mortality (overall)16.7% vs. 5.9%
      Burckhardt et al.Proper coding of the Abbreviated Injury Scale: can clinical parameters help as surrogates in estimating blood loss?Eur J Trauma merg Surg.2014Retrospective (Database)11,574MortalityAO Type B –Mortality (24 h) / Mortality in hospital
      Pelvic ring fracture
      AIS 35.5% / 9.9%
      AIS 416.4% / 22.6%
      AIS 525.8% / 34.8%
      AO Type C –Mortality (24 h) / Mortality in hospital
      Pelvic ring fracture
      AIS 48.5% / 13.7%
      AIS 536.6% / 43.4%
      Table 3Risk of bias according to the QUIPS-tool.

      Coagulopathy

      INR

      A total of 23 publications on INR and trauma were included (Table 2). Most publications mainly examined the association between INR or VEM and mortality or the need for massive transfusions. Studies indicate that an INR of 1.5 defines the presence of coagulopathy. Our analysis found that in most studies (n = 11) with an INR < 1.2 were less likely to be associated with higher mortality and the need for massive transfusion (MTP) protocols. Other publications (Table 2) reported selected higher INR values from 1.4 to >2. . Therefore, INR values below 1.2 were defined as the criteria for a "stable" patient. The presence of coagulopathy (INR >1.5) defined an "unstable" patient. The interval between 1.2 and 1.5 was defined as the "borderline" range. An INR > 1.2 and < 1.5 is associated with an increased risk of complications. No quantitative value was established for patients defined as "in extremis," but they must be associated with severe trauma-related coagulopathy.

      Rotational thromboelastometry (ROTEM)

      Numerous parameters can be read from thromboelastography, and not all correlate closely with the presence of coagulopathy. Studies found that EXTEM CT, EXTEM MCF and FIBTEM MCF can be used for screening and repeated values are associated with the presence of complications or the need for mass transfusions [
      • Maegele M.
      • Inaba K.
      • Rizoli S.
      • Veigas P.
      • Callum J.
      • Davenport R.
      • Fröhlich M.
      • Hess J.
      Konsensusgruppe zur Erarbeitung einer viskoelastizitätsbasierten Leitlinie zur frühen Gerinnungstherapie bei blutenden Schwerverletzten. Frühe viskoelastizitätsbasierte Gerinnungstherapie bei blutenden Schwerverletzten: bericht der Konsensusgruppe über die Konsensuskonferenz 2014 zur Erarbeitung einer S2k-Leitlinie [Early viscoelasticity-based coagulation therapy for severely injured bleeding patients: report of the consensus group on the consensus conference 2014 for formulation of S2k guidelines].
      ]. In total 9 publications were included describing ROTEM measurements in patients with trauma (Table 2). Four studies described safe EXTEM CT values of approximately 60 s. Others (n = 3) reported values between 80 and 100 s. Publications reported the presence of trauma-related coagulopathy or the need for mass transfusion at EXTEM MCF values below approximately 60 mm. Mortality rates and transfusion protocol activation continued to increase after EXTEM-MCF values fell further below 40–50 mm. Finally, FEBTEM-MCF values were associated with fewer complications if they were measured above 10–12 mm. Further decline in these parameters proved the presence of trauma-induced coagulopathy <5 mm.
      In summary, no trauma-induced coagulopathy (TIC) was confirmed when EXTEM CT, EXTEM MCF and FIBTEM MCF (<60 s; <60 mm; >12 mm) were measured. When EXTEM CT >80 s, EXTEM MCF <45 mm and FIBTEM MCF <5 mm was observed, patients were at risk for trauma-induced coagulopathy (TIC) and therefore defined as "unstable" in our classification system, whereas values between "stable" and "unstable" were defined as "borderline." Patients defined as “in extremis” did not receive a defined quantitative value but needs to be associated with severe trauma-induced coagulopathy in existence and/or values exceeding the measurement range of the ROTEM.

      Thromboelastography (r-TEG)

      Similarly, only a few studies have reported thresholds associated with adverse outcome in severely injured patients and TEG. In particular, parameters such as ACT/MA/Ly30 have been used to predict the need for a mass transfusion protocol in trauma patients. Although different kinds of thromboelastography have been used (Native, Kaolin and Rapid [
      • Coleman J.R.
      • Moore E.E.
      • Chapman M.P.
      • Banerjee A.
      • Silliman C.C.
      • Ghasabyan A.
      • Chandler J.
      • Samuels J.M.
      • Sauaia A.
      Rapid TEG efficiently guides hemostatic resuscitation in trauma patients.
      ]), we focused on rapid-TEG (r-TEG) since it is the mostly commonly mentioned method in the literature. A total of six publications addressed the issues of r-TEG and trauma (Table 2). In three studies, ACT values above 128 s were associated with the indication of mass transfusion. Complications were found less frequently in patients with values around 105 or 110 s. Similar results were found for MA measurements. According to the published studies, MA values below 55 mm were associated with an adverse outcome. The lowest complication rates were found at values around 65 mm. In summary: ACT <110 s, MA >60 mm, and Ly30 of 〈3% have been reported in the literature as safe thresholds. Thresholds for high mortality and MTP were defined as ACT 〉 128 s, MA 〈 55 mm, and Ly30 〉 5%. All values in between were considered “borderline” in our study.

      Haemorrhage/shock

      To identify shock patients and determine the value of tissue oxygenation disturbance, we focused on the following parameters: Lactate, blood pressure, and Hb level on admission.

      Lactate

      Numerous studies have suggested the use of lactate for decision making in multiply injured patients. A systematic review of studies published between 2000 and 2020 identified a wide range of lactate thresholds that can be used for surgical decision making in orthopaedic trauma [
      • Pape H.C.
      • Halvachizadeh S.
      • Leenen L.
      • Velmahos G.D.
      • Buckley R.
      • Giannoudis P.V.
      Timing of major fracture care in polytrauma patients - An update on principles, parameters and strategies for 2020.
      ]. The lowest safe threshold was 2 mmol/l, and others suggested values of 4 mmol/l as a threshold. Because fracture fixation has been reported to be safe in patients with values below 2 mmol/l, "stable" patients should have values below 2 mmol/l and "unstable" patients should have lactate values above 4 mmol/l. Values between 2 and 4 mmol/l were defined as "borderline." Patients should be considered "in extremis" if uncontrollable bleeding or hypotension unresponsive to therapy is noted.

      Systolic blood pressure

      In a large registry study of more than 3411 polytrauma patients, Mutschler et al. critically reviewed the ATLS classification of hypovolemic shock [
      • Mutschler M.
      • Nienaber U.
      • Brockamp T.
      • Wafaisade A.
      • Wyen H.
      • Peiniger S.
      • Paffrath T.
      • Bouillon B.
      • Maegele M.
      • TraumaRegister D.G.U.
      A critical reappraisal of the ATLS classification of hypovolaemic shock: does it really reflect clinical reality?.
      ]. In particular, systolic blood pressure below 90 mmHg on admission was associated with a high complication rate (up to 45%). For systolic blood pressure values above 100 mmHg on admission, mortality decreased to 9%. According to the above comprehensive study, all patients with systolic blood pressure above 100 mmHg were classified as "stable" and values below 90 mmHg were classified as "unstable". Patients should be considered as “in extremis” if an uncontrollable haemorrhage or hypotension nonresponsive to therapy is seen.

      Haemoglobin level

      Hb at admission correlates very closely with the presence of shock and is a marker of tissue oxygenation. A total of 7 publications (Table 2) on Hb and haemorrhagic shock were included. In general, all included studies described cutoff values between 7 g/dl and 10 g/dl. The largest study was conducted by Tanner et al. [
      • Tanner L.
      • Neef V.
      • Raimann F.J.
      • Störmann P.
      • Marzi I.
      • Lefering R.
      • Zacharowski K.
      • Piekarski F.
      Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®.
      ], which included more than 60,000 trauma patients from a nationwide trauma registry. This study clearly describes a safe cutoff value associated with mortality, transfusion, and length of stay. Patients presenting with an Hb value < 7 g/dl on admission, up to 36% were in shock and the mortality rate within 24 h was over 40% [
      • Tanner L.
      • Neef V.
      • Raimann F.J.
      • Störmann P.
      • Marzi I.
      • Lefering R.
      • Zacharowski K.
      • Piekarski F.
      Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®.
      ]. A higher survival rate in the first 24 h was observed for Hb values above 9 g/dl (up to 95%). Therefore, patients were defined as "unstable" with Hb values below 7 g/dL and "stable" with values above 9 g/dL. Values that fell in between were classified as "borderline". Patients should be considered as “in extremis” if an uncontrollable haemorrhage or hypotension nonresponsive to therapy is seen.

      Hypothermia

      Eleven publications have addressed the role of hypothermia in severely injured patients. In most studies (n = 9) (Table 2), a value below 35 °C body temperature was chosen as the threshold, and a significant increase in mortality was documented in hypothermic patients [
      • Wang H.E.
      • Callaway C.W.
      • Peitzman A.B.
      • Tisherman S.A.
      Admission hypothermia and outcome after major trauma.
      ]. Mortality rates are increased when body temperature is below 33 °C, leading to coagulation problems, cardiac dysfunction, and tissue oxygenation disorders. Therefore, "stable" patients have body temperatures above 35 °C, "unstable" patients have values below 33 °C, and "borderline" patients have values in between. The patient can be considered as “in extremis” if persistent hypothermia occurs or difficult/prolonged rewarming appears under treatment.

      Soft tissue injury

      Traumatic brain injury

      Clinical and radiological signs of increased intracranial pressure in particular may require an abbreviated surgical strategy in order to reduce the risk of secondary brain damage. In total we could identify 9 publications with the focus on traumatic brain injury, required parameters and outcome. In the majority of studies (n = 5) (Table 2) an increase in intracranial pressure (ICP) >20 mmHg, was associated with high mortality rates (up 80%) [
      • Juul N.
      • Morris G.F.
      • Marshall S.B.
      • Marshall L.F.
      Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial.
      ]. Intracranial pressure (ICP) below <15 mmHg [
      • Schreiber M.A.
      • Aoki N.
      • Scott B.G.
      • Beck J.R.
      Determinants of mortality in patients with severe blunt head injury.
      ] and cranial perfusion pressure (CPP) above >70 mmHg [
      • Juul N.
      • Morris G.F.
      • Marshall S.B.
      • Marshall L.F.
      Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial.
      ,
      • Balestreri M.
      • Czosnyka M.
      • Steiner L.A.
      • Schmidt E.
      • Smielewski P.
      • Matta B.
      • Pickard J.D.
      Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?.
      ] were associated with a favourable outcome. Reduced cranial perfusion pressure (CPP) <60 mmHg [
      • Lannoo E.
      • Van Rietvelde F.
      • Colardyn F.
      • Lemmerling M.
      • Vandekerckhove T.
      • Jannes C.
      • De Soete G.
      Early predictors of mortality and morbidity after severe closed head injury.
      ] and the presence of a midline shift above 5 mm [
      • Schreiber M.A.
      • Aoki N.
      • Scott B.G.
      • Beck J.R.
      Determinants of mortality in patients with severe blunt head injury.
      ,
      • Lannoo E.
      • Van Rietvelde F.
      • Colardyn F.
      • Lemmerling M.
      • Vandekerckhove T.
      • Jannes C.
      • De Soete G.
      Early predictors of mortality and morbidity after severe closed head injury.
      ] in a CT scan indicate an unstable status. Patients with a traumatic brain injury with clinical/radiological signs of a herniation may be considered as “in extremis”.

      Thoracic and abdominal trauma

      In an extensive systematic review including 127 publications, Roberts et al. defined the indication for use of damage control surgery in civilian trauma patients. Beside the physiological parameters that have been described previously the authors summarized organ-related injuries that provide the highest rated indications for damage control surgery. The following list includes a short version of the indications described by Roberts et al. [
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Parry N.
      • Nicol A.J.
      • Navsaria P.H.
      • Moore E.E.
      • Leppäniemi A.K.
      • Inaba K.
      • Fabian T.C.
      • D'Amours S.
      • Brohi K.
      • Stelfox H.T
      Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: a content analysis and expert appropriateness rating study.
      ].
      • -
        A difficult-access major venous injury
      • -
        Major liver or combined pancreaticoduodenal injury with haemodynamic instability
      • -
        Devascularization or massive disruption of intra-abdominal organs, such as duodenum, pancreas, pancreatic-duodenal complex
      • -
        Uncontrollable haemorrhage
      • -
        Need for surgical abdominal or thoracic reconstruction (open abdomen treatment, abdominal or thoracic compartment syndrome, reassessment of bowel function)
      Assessment of the Thoracic Trauma Severity Score (TTS) also allows the identification of patients at risk after sustained blunt thoracic trauma [
      • Pape H.C.
      • Remmers D.
      • Rice J.
      • Ebisch M.
      • Krettek C.
      • Tscherne H.
      Appraisal of early evaluation of blunt chest trauma: development of a standardized scoring system for initial clinical decision making.
      ]. Our review identified 12 publications summizing the evaluation and associated outcome with the thoracic trauma severity score Table 2. Five publications reported a TTS of 8 points as threshold for early complications. Others reported values of 9 points (n = 1) and 7 points (n = 2). According to publications describing the thresholds of the score, patients with a TTS of ≥ 8 points were defined as “unstable” due to their associated high mortality and complications, such as Acute Respiratory Distress Syndrome (ARDS). A favourable outcome has been reported with values below 5 points [
      • Aukema T.S.
      • Beenen L.F.
      • Hietbrink F.
      • Leenen L.P.
      Validation of the Thorax Trauma Severity Score for mortality and its value for the development of acute respiratory distress syndrome.
      ]. This threshold was used to define “stable” patients. Patients “in extremis” can be identified if a deformation of the thoracic wall with respiratory decompensation occurs.

      Musculoskeletal trauma

      Beside the degree of the physiological insult, local tissue injury of the musculoskeletal system may also be an indication for abbreviated surgery and a staged procedure. It is well known that the severity of pelvic injury has an impact on patient outcome and complications [
      • Burkhardt M.
      • Holstein J.H.
      • Moersdorf P.
      • Kristen A.
      • Lefering R.
      • Pohlemann T.
      • Pizanis A.
      • TraumaRegister D.G.U.
      Proper coding of the Abbreviated Injury Scale: can clinical parameters help as surrogates in estimating blood loss?.
      ]. The included studies show an increased mortality rate associated with classification (AO type A vs. B vs. C) [
      • Burkhardt M.
      • Nienaber U.
      • Pizanis A.
      • Maegele M.
      • Culemann U.
      • Bouillon B.
      • Flohé S.
      • Pohlemann T.
      • Paffrath T.
      • TraumaRegister D.G.U.
      German Pelvic Injury Register of the Deutsche Gesellschaft für Unfallchirurgie. Acute management and outcome of multiple trauma patients with pelvic disruptions.
      ]. Higher rates of sepsis and multiple organ failure (MOF) were also reported in patients with unstable pelvic ring injuries (type C) and complex pelvic ring fractures [
      • Burkhardt M.
      • Nienaber U.
      • Krause J.
      • Pizanis A.
      • Moersdorf P.
      • Culemann U.
      • Aghayev E.
      • Paffrath T.
      • Pohlemann T.
      • Holstein J.H.
      • Beckenregister D.G.U.
      TraumaRegister DGU®. Das komplexe Beckentrauma : matching des Beckenregisters DGU mit dem TraumaRegister DGU® [Complex pelvic traumas : data linkage of the German Pelvic Injury Register and the TraumaRegister DGU®].
      ]. However, the highest mortality was reported in complex pelvic ring injuries. Complex pelvic injuries and hemi-pelvectomies in particular are described as an indication for external fixation. In a systematic review and expert opinion survey, the following list of indications for a staged procedure was presented [
      • Pfeifer R.
      • Kalbas Y.
      • Coimbra R.
      • Leenen L.
      • Komadina R.
      • Hildebrand F.
      • Halvachizadeh S.
      • Akhtar M.
      • Peralta R.
      • Fattori L.
      • Mariani D.
      • Hasler R.M.
      • Lefering R.
      • Marzi I.
      • Pitance F.
      • Osterhoff G.
      • Volpin G.
      • Weil Y.
      • Wendt K.
      • Pape H.C.
      Indications and interventions of damage control orthopedic surgeries: an expert opinion survey.
      ]:
      • -
        Associated vascular injuries
      • -
        Severe contaminated wounds
      • -
        Severe bone defects
      • -
        Complex articular fractures
      Of high importance is the discrimination between the indication for a temporary fixation due to the patient's physiology and local tissue trauma. Staged procedures in the musculoskeletal system performed mainly due to local factors (contaminated wounds, complex fractures, bone defects, etc.) should be called Musculoskeletal Temporary Surgery (MUST) and not Damage Control Orthopaedics (DCO) [
      • Pfeifer R.
      • Kalbas Y.
      • Coimbra R.
      • Leenen L.
      • Komadina R.
      • Hildebrand F.
      • Halvachizadeh S.
      • Akhtar M.
      • Peralta R.
      • Fattori L.
      • Mariani D.
      • Hasler R.M.
      • Lefering R.
      • Marzi I.
      • Pitance F.
      • Osterhoff G.
      • Volpin G.
      • Weil Y.
      • Wendt K.
      • Pape H.C.
      Indications and interventions of damage control orthopedic surgeries: an expert opinion survey.
      ]. In the second type of procedure, secondary fixation is mainly needed due to the physiological impairment of the patient.

      Discussion

      The current literature confirms that early definitive stabilization is beneficial in physiologically stable polytraumatized patients with major fractures [
      • Vallier H.A.
      • Super D.M.
      • Moore T.A.
      • Wilber J.H.
      Do patients with multiple system injury benefit from early fixation of unstable axial fractures? The effects of timing of surgery on initial hospital course.
      ,
      • Volpin G.
      • Pfeifer R.
      • Saveski J.
      • Hasani I.
      • Cohen M.
      • Pape H.C.
      Damage control orthopaedics in polytraumatized patients- current concepts.
      ]. The challenge in the decision-making process is the identification of patients at risk for systemic complications. Moreover, recent discussion has shown that decision making in the initial phase after trauma should not be dichotomous, but rather should be dynamic and focus on patient physiology [
      • Volpin G.
      • Pfeifer R.
      • Saveski J.
      • Hasani I.
      • Cohen M.
      • Pape H.C.
      Damage control orthopaedics in polytraumatized patients- current concepts.
      ]. In this systematic review, we aimed to increase the level of evidence describing parameters and thresholds associated with a negative outcome. Putting all these parameters together, we can stratify the polytrauma patient into a known classification system [
      • Pape H.C.
      • Giannoudis P.V.
      • Krettek C.
      • Trentz O.
      Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making.
      ] and identify patients that may profit from early or late fixation strategies. Repeated re-evaluation of the abovementioned parameters is advisable until the full reconstruction of the patient. Our review revealed the following parameters to be of value for critical decision making.

      Coagulopathy

      Recently published studies demonstrated that the majority of trauma surgeons identify physiologically unstable patients as those with impaired hemodynamics who do not respond to resuscitation, with coagulopathy and acidosis [
      • Scherer J.
      • Coimbra R.
      • Mariani D.
      • Leenen L.
      • Komadina R.
      • Peralta R.
      • Fattori L.
      • Marzi I.
      • Wendt K.
      • Gaarder C.
      • Pape H.C.
      • Pfeifer R.
      Standards of fracture care in polytrauma: results of a Europe-wide survey by the ESTES polytrauma section.
      ]. This is consistent with several previous studies using multiple parameters [
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Brohi K.
      • D'Amours S.
      • Fabian T.C.
      • Inaba K.
      • Leppäniemi A.K.
      • Moore E.E.
      • Navsaria P.H.
      • Nicol A.J.
      • Parry N.
      • Stelfox H.T
      Indications for Use of Damage Control Surgery in Civilian Trauma Patients: a Content Analysis and Expert Appropriateness Rating Study.
      ,
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Parry N.
      • Nicol A.J.
      • Navsaria P.H.
      • Moore E.E.
      • Leppäniemi A.K.
      • Inaba K.
      • Fabian T.C.
      • D'Amours S.
      • Brohi K.
      • Stelfox H.T
      Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: a content analysis and expert appropriateness rating study.
      ,
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Stelfox H.T.
      Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review.
      ]. However, besides the physiological parameters, the severity of injury, determined by the initial ISS score, seems to play only a less relevant role. Moreover, to assess the patient, trauma surgeons use the aforementioned abnormal parameters in the "lethal triad" (hypothermia, coagulopathy, and acidosis). Up to 35% of patients with severe injuries present with trauma-induced coagulopathy on admission [
      • Holcomb J.B.
      • Minei K.M.
      • Scerbo M.L.
      • Radwan Z.A.
      • Wade C.E.
      • Kozar R.A.
      • Gill B.S.
      • Albarado R.
      • McNutt M.K.
      • Khan S.
      • Adams P.R.
      • McCarthy J.J.
      • Cotton B.A.
      Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients.
      ]. Abnormal coagulation is associated with higher mortality even in mildly injured patients. The most recent guidelines for the management of major bleeding (grade 1C) recommend early and repeated assessment of the coagulation system via the International Normalized Ratio (INR) or viscoelastic methods (VEM) [
      • Spahn D.R.
      • Bouillon B.
      • Cerny V.
      • Duranteau J.
      • Filipescu D.
      • Hunt B.J.
      • Komadina R.
      • Maegele M.
      • Nardi G.
      • Riddez L.
      • Samama C.M.
      • Vincent J.L.
      • Rossaint R.
      The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition.
      ]. Identification of patients with existing coagulopathy in trauma surgery requires early and rapid diagnosis. Rapid INR and VEM are measures that can be monitored while the patient is present in the trauma bay. Goodmann et al. [
      • Goodman M.D.
      • Makley A.T.
      • Hanseman D.J.
      • Pritts T.A.
      • Robinson B.R.
      All the bang without the bucks: defining essential point-of-care testing for traumatic coagulopathy.
      ] showed that rapid INR is faster and less expensive than thromboelastography [
      • Goodman M.D.
      • Makley A.T.
      • Hanseman D.J.
      • Pritts T.A.
      • Robinson B.R.
      All the bang without the bucks: defining essential point-of-care testing for traumatic coagulopathy.
      ]. However, existing guidelines mainly use thromboelastography for initial decision making [
      • Spahn D.R.
      • Bouillon B.
      • Cerny V.
      • Duranteau J.
      • Filipescu D.
      • Hunt B.J.
      • Komadina R.
      • Maegele M.
      • Nardi G.
      • Riddez L.
      • Samama C.M.
      • Vincent J.L.
      • Rossaint R.
      The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition.
      ]. TEG and ROTEM provide some consistency in their ability to derive fibrinolysis phenotypes to stratify patients into different risk groups.

      Haemorrhage/shock

      Acid-base parameters are routinely used to assess severely injured patients. Specifically, lactate has been suggested for screening patients for definitive long bone or axial fracture reconstruction [
      • Vallier H.A.
      • Super D.M.
      • Moore T.A.
      • Wilber J.H.
      Do patients with multiple system injury benefit from early fixation of unstable axial fractures? The effects of timing of surgery on initial hospital course.
      ]. There are several factors that may affect lactate levels after trauma, such as alcohol consumption and liver disease. Other authors have suggested focusing on lactate clearance within the first 24 h [
      • Davis J.W.
      • Kaups K.L.
      • Parks S.N.
      Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock.
      ], while others suggest that screening multiple systems, such as acid-base, coagulation, temperature, and tissue damage, is safer and predicts the development of complications [
      • Halvachizadeh S.
      • Baradaran L.
      • Cinelli P.
      • Pfeifer R.
      • Sprengel K.
      • Pape H.C.
      How to detect a polytrauma patient at risk of complications: a validation and database analysis of four published scales.
      ]. Systolic blood pressure was also included in this review since blood pressure is an important parameter for the assessment of patient haemodynamic stability. The American College of Surgeons shock classification was adopted in this systematic review because this scheme is widely established in clinical practice and is also used in ATLS guidelines. In addition, it should be noted that systolic blood pressure during resuscitation is also a target parameter and therefore is always corrected during treatment. Thus, we used validated data from large databases as a guide [
      • Mutschler M.
      • Nienaber U.
      • Brockamp T.
      • Wafaisade A.
      • Wyen H.
      • Peiniger S.
      • Paffrath T.
      • Bouillon B.
      • Maegele M.
      • TraumaRegister D.G.U.
      A critical reappraisal of the ATLS classification of hypovolaemic shock: does it really reflect clinical reality?.
      ].

      Temperature

      Most of the included studies that examined the role of hypothermia in polytrauma care were more or less consistent and described more complications in patients with low temperature. However, we found no publications describing the exact effects of hypothermia on the coagulation system and related measurements, even though thromboelastography is temperature dependant. Further studies are needed to describe the effects of hypothermia on ROTEM/TEG

      Soft tissue injury

      Experimental and clinical studies suggest that not only haemorrhagic shock but also tissue damage during resuscitation must be initially assessed and targeted [
      • Pape H.C.
      • Moore E.E.
      • McKinley T.
      • Sauaia A.
      Pathophysiology in patients with polytrauma.
      ]. However, assessing tissue damage in the brain, trunk, and musculoskeletal system is a major challenge. Identification and stratification of tissue damage after trauma is critical for the initial assessment of a severely injured patient and subsequent decision making. Tissue damage resulting from direct physical trauma stimulates immune system activation and impacts the endothelial system, coagulation, local and systemic blood flow, and tissue oxygenation [
      • Keel M.
      • Trentz O.
      Pathophysiology of polytrauma.
      ]. However, an objective and reliable marker of tissue injury has not yet been described. In particular, the injury severity score (ISS) correlates with mortality, inflammation, and surgical decision making [
      • Pape H.C.
      • Halvachizadeh S.
      • Leenen L.
      • Velmahos G.D.
      • Buckley R.
      • Giannoudis P.V.
      Timing of major fracture care in polytrauma patients - An update on principles, parameters and strategies for 2020.
      ]. Very low interobserver variability and incomplete assessment of the overall ISS in the trauma bay are major limitations of the score in the initial phase of treatment [
      • Bolierakis E.
      • Schick S.
      • Sprengel K.
      • Jensen K.O.
      • Hildebrand F.
      • Pape H.C.
      • Pfeifer R.
      Interobserver variability of injury severity assessment in polytrauma patients: does the anatomical region play a role?.
      ]. The use of immunological markers such as interleukin (IL-6, 8, etc.), which indicate the inflammatory status of the body [
      • Volpin G.
      • Cohen M.
      • Assaf M.
      • Meir T.
      • Katz R.
      • Pollack S.
      Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients.
      ], have also been suggested. These markers are not measured in the primary care laboratory and have not yet been introduced into broad clinical practice.
      Traumatic brain injury is one of the most important factors influencing initial decision making after polytrauma. Giannoudis et al. review 13 papers focusing on the timing of fixation of major fractures in patients with concomitant brain injuries [
      • Giannoudis P.V.
      • Veysi V.T.
      • Pape H.C.
      • Krettek C.
      • Smith M.R.
      When should we operate on major fractures in patients with severe head injuries?.
      ]. In this study, outcomes were found to be better when fractures were fixed early. However, disadvantages of early fixation include stimulation of the systemic inflammatory response and the possibility of secondary brain injury from hypoxia or hypotension. Therefore, perfusion of the brain must be maintained by monitoring ICP and CPP, which was also worked up in our study.
      If a Damage Control indication is made in one injured body region, then this indication is normally transferred to the other body regions as well. Roberts et al. identified a comprehensive list of candidate indications for use of DC surgery in trunk (thorax, abdomen, and pelvis) [
      • Roberts D.J.
      • Bobrovitz N.
      • Zygun D.A.
      • Ball C.G.
      • Kirkpatrick A.W.
      • Faris P.D.
      • Stelfox H.T.
      Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review.
      ]. This work demonstrates an elaborated list of clear indications, which has also been included in our table. These indications provide a practical foundation to guide surgical practice while studies are conducted to evaluate their impact on patient care and outcomes.
      Other factors such as injury pattern, trauma system and organization, education and experience of the responsible trauma team are also relevant in the initial decision making, however, these topics were not covered in this systematic review. Moreover, the included studies usually mentioned the treatment strategy used but did not address the complexity of the initial decision making in the treatment of polytraumatized patients. Our purpose was to include parameters that are widely accepted and can be assessed in every trauma centre. As an example, recent recommendations for the treatment of bleeding patients mainly suggest using thromboelastometry to guide the treatment of trauma patients. However, not all trauma centers have access to viscoelastic methods, either due to their high cost or insufficient evidence of their benefits.

      Limitations

      Most included studies did not examine the target parameters and thresholds for damage control in orthopaedics and thus cutoff values from the included datasets were used. Therefore, there is some selection bias in these studies.

      Conclusion

      In this systematic literature review including 68 publications, we have summarized relevant publications that focus on parameters that stimulate pathophysiological cascades and remote organ damage. The physiologic parameters included are clinically relevant and available in the trauma bay and emergency room. We have also developed thresholds using a known classification system (stable, borderline, unstable, in extremis). Repeated re-evaluation and assessment of patients in terms of their physiology allows dynamic classification and adaptation of the treatment strategy. We propose that these parameters can be used for clinical decision making within the concept of safe definitive surgery (SDS) in the treatment of severely injured patients (Fig. 4). In future studies parameters and thresholds should be reassessed and evaluated in a separate database.
      Fig 4:
      Fig. 4Treatment algorithm in polytraumatized patients according to the Safe Definitive Surgery concept (SDS). Repeated assessment of numerous pathophysiologic cascades allows the identification of patients at risk [
      • Volpin G.
      • Pfeifer R.
      • Saveski J.
      • Hasani I.
      • Cohen M.
      • Pape H.C.
      Damage control orthopaedics in polytraumatized patients- current concepts.
      ].

      CRediT authorship contribution statement

      Roman Pfeifer: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Writing – review & editing. Felix Karl-Ludwig Klingebiel: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. Sascha Halvachizadeh: Methodology, Writing – original draft, Writing – review & editing. Yannik Kalbas: Methodology, Writing – original draft, Writing – review & editing. Hans-Christoph Pape: Conceptualization, Data curation, Investigation, Project administration, Supervision, Writing – review & editing.

      References

        • Nauth A.
        • Hildebrand F.
        • Vallier H.
        • Moore T.
        • Leenen L.
        • Mckinley T.
        • Pape H.C.
        Polytrauma: update on basic science and clinical evidence.
        OTA Int. 2021 Feb 23; 4 (PMID: 33937720; PMCID: PMC8016602): e116https://doi.org/10.1097/OI9.0000000000000116
        • Nahm N.J.
        • Como J.J.
        • Wilber J.H.
        • Vallier H.A.
        Early appropriate care: definitive stabilization of femoral fractures within 24 h of injury is safe in most patients with multiple injuries.
        J Trauma. 2011; 71 (PMID: 21336198): 175-185https://doi.org/10.1097/TA.0b013e3181fc93a2
        • Lichte P.
        • Kobbe P.
        • Dombroski D.
        • Pape H.C.
        Damage control orthopedics: current evidence.
        Curr Opin Crit Care. 2012; 18 (PMID: 23037876): 647-650https://doi.org/10.1097/MCC.0b013e328359fd57
        • Shapiro M.B.
        • Jenkins D.H.
        • Schwab C.W.
        • Rotondo M.F.
        Damage control: collective review.
        J Trauma. 2000; 49: 969-978
        • Bolierakis E.
        • Schick S.
        • Sprengel K.
        • Jensen K.O.
        • Hildebrand F.
        • Pape H.C.
        • Pfeifer R.
        Interobserver variability of injury severity assessment in polytrauma patients: does the anatomical region play a role?.
        Eur J Med Res. 2021; 26 (PMID: 33858510; PMCID: PMC8051093): 35https://doi.org/10.1186/s40001-021-00506-w
        • Halvachizadeh S.
        • Pape H.C.
        Determining the patient at risk - are scoring systems helpful to develop individualized concepts for safe definitive fracture fixation and damage control techniques?.
        Injury. 2019; 50 (Erratum in: Injury. 2019 Nov;50(11):2147-2148. PMID: 31280866): 1269-1271https://doi.org/10.1016/j.injury.2019.06.031
        • Vallier H.A.
        • Moore T.A.
        • Como J.J.
        • Wilczewski P.A.
        • Steinmetz M.P.
        • Wagner K.G.
        • Smith C.E.
        • Wang X.F.
        • Dolenc A.J.
        Complications are reduced with a protocol to standardize timing of fixation based on response to resuscitation.
        J Orthop Surg Res. 2015; 10 (PMID: 26429572; PMCID: PMC4590279): 155https://doi.org/10.1186/s13018-015-0298-1
        • Hildebrand F.
        • Lefering R.
        • Andruszkow H.
        • Zelle B.A.
        • Barkatali B.M.
        • Pape H.C.
        Development of a scoring system based on conventional parameters to assess polytrauma patients: polyTrauma Grading Score (PTGS).
        Injury. 2015; 46 (PMID: 26542873): S93-S98https://doi.org/10.1016/S0020-1383(15)30025-5
        • Moore E.
        Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome.
        Am J Surg. 1996; 172: 405-410
        • Rotondo M.F.
        • Schwab C.W.
        • McGonigal M.D.
        • et al.
        Damage control: an approach for improved survival in exsanguinating penetrating abdominal injury.
        J Trauma. 1993; 35: 375-382
        • Pape H.C.
        • Giannoudis P.V.
        • Krettek C.
        • Trentz O.
        Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making.
        J Orthop Trauma. 2005; 19 (PMID: 16118563): 551-562https://doi.org/10.1097/01.bot.0000161712.87129.80
        • Clendenen N.
        • Nunns G.R.
        • Moore E.E.
        • Reisz J.A.
        • Gonzalez E.
        • Peltz E.
        • Silliman C.C.
        • Fragoso M.
        • Nemkov T.
        • Wither M.J.
        • Hansen K.
        • Banerjee A.
        • Moore H.B.
        • DʼAlessandro A.
        Hemorrhagic shock and tissue injury drive distinct plasma metabolome derangements in swine.
        J Trauma Acute Care Surg. 2017; 83 (PMID: 28463938; PMCID: PMC5608631): 635-642https://doi.org/10.1097/TA.0000000000001504
        • Spahn D.R.
        • Bouillon B.
        • Cerny V.
        • Duranteau J.
        • Filipescu D.
        • Hunt B.J.
        • Komadina R.
        • Maegele M.
        • Nardi G.
        • Riddez L.
        • Samama C.M.
        • Vincent J.L.
        • Rossaint R.
        The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition.
        Crit Care. 2019; 23 (PMID: 30917843; PMCID: PMC6436241): 98https://doi.org/10.1186/s13054-019-2347-3
        • Halvachizadeh S.
        • Baradaran L.
        • Cinelli P.
        • Pfeifer R.
        • Sprengel K.
        • Pape H.C.
        How to detect a polytrauma patient at risk of complications: a validation and database analysis of four published scales.
        PLoS ONE. 2020; 15 (PMID: 31978109; PMCID: PMC6980592)e0228082https://doi.org/10.1371/journal.pone.0228082
        • Hayden J.A.
        • van der Windt D.A.
        • Cartwright J.L.
        • Côté P.
        • Bombardier C.
        Assessing bias in studies of prognostic factors.
        Ann Intern Med. 2013; 158 (PMID: 23420236): 280-286https://doi.org/10.7326/0003-4819-158-4-201302190-00009
        • Mutschler M.
        • Nienaber U.
        • Brockamp T.
        • Wafaisade A.
        • Wyen H.
        • Peiniger S.
        • Paffrath T.
        • Bouillon B.
        • Maegele M.
        • TraumaRegister D.G.U.
        A critical reappraisal of the ATLS classification of hypovolaemic shock: does it really reflect clinical reality?.
        Resuscitation. 2013; 84 (Epub 2012 Jul 24. PMID: 22835498): 309-313https://doi.org/10.1016/j.resuscitation.2012.07.012
        • Pape H.C.
        • Halvachizadeh S.
        • Leenen L.
        • Velmahos G.D.
        • Buckley R.
        • Giannoudis P.V.
        Timing of major fracture care in polytrauma patients - An update on principles, parameters and strategies for 2020.
        Injury. 2019; 50 (Epub 2019 Sep 13. PMID: 31558277): 1656-1670https://doi.org/10.1016/j.injury.2019.09.021
        • Tanner L.
        • Neef V.
        • Raimann F.J.
        • Störmann P.
        • Marzi I.
        • Lefering R.
        • Zacharowski K.
        • Piekarski F.
        Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®.
        Eur J Trauma Emerg Surg. 2022; (Epub ahead of print. PMID: 35059750)https://doi.org/10.1007/s00068-021-01869-9
        • Inaba K.
        • Teixeira P.G.
        • Shulman I.
        • Nelson J.
        • Lee J.
        • Salim A.
        • Brown C.
        • Demetriades D.
        • Rhee P.
        The impact of uncross-matched blood transfusion on the need for massive transfusion and mortality: analysis of 5,166 uncross-matched units.
        J Trauma. 2008; 65 (PMID: 19077605): 1222-1226https://doi.org/10.1097/TA.0b013e31818e8ff3
        • Doklestić K.
        • Djukić V.
        • Ivančević N.
        • Gregorić P.
        • Lončar Z.
        • Stefanović B.
        • Jovanović D.
        • Karamarković A.
        Severe Blunt Hepatic Trauma in Polytrauma Patient - Management and Outcome.
        Srp Arh Celok Lek. 2015; 143 (PMID: 26506751): 416-422https://doi.org/10.2298/sarh1508416d
        • Mitra B.
        • Tullio F.
        • Cameron P.A.
        • Fitzgerald M.
        Trauma patients with the 'triad of death'.
        Emerg Med J. 2012; 29 (Epub 2011 Jul 23. PMID: 21785151): 622-625https://doi.org/10.1136/emj.2011.113167
        • Hilbert P.
        • Hofmann G.O.
        • Lefering R.
        • Struck MF.
        Schockraumhämoglobin. Prädiktor für eine Gerinnungsstörung beim Traumapatienten [Trauma bay haemoglobin level. Predictor of coagulation disorder in major trauma].
        Unfallchirurg. 2015; 118 (GermanPMID: 24445308): 601-606https://doi.org/10.1007/s00113-013-2522-y
        • Hirschmann M.T.
        • Uike K.N.
        • Kaufmann M.
        • Huegli R.
        • Regazzoni P.
        • Gross T.
        Qualitätssicherung interdisziplinärer Polytraumaversorgung. Möglichkeiten und Grenzen retrospektiver Standarderfassung [Quality management of interdisciplinary treatment of polytrauma. Possibilities and limits of retrospective routine data collection].
        Anaesthesist. 2007; 56 (GermanPMID: 17483913): 673-678https://doi.org/10.1007/s00101-007-1192-y
        • Frischknecht A.
        • Lustenberger T.
        • Bukur M.
        • Turina M.
        • Billeter A.
        • Mica L.
        • Keel M.
        Damage control in severely injured trauma patients - A ten-year experience.
        J Emerg Trauma Shock. 2011; 4 (PMID: 22090736; PMCID: PMC3214499): 450-454https://doi.org/10.4103/0974-2700.86627
        • Stettler G.R.
        • Moore E.E.
        • Nunns G.R.
        • Chandler J.
        • Peltz E.
        • Silliman C.C.
        • Banerjee A.
        • Sauaia A.
        Rotational thromboelastometry thresholds for patients at risk for massive transfusion.
        J Surg Res. 2018; 228 (Epub 2018 Apr 11. PMID: 29907206; PMCID: PMC6039387): 154-159https://doi.org/10.1016/j.jss.2018.03.027
        • David J.S.
        • Friggeri A.
        • Vacheron C.H.
        • Bouzat P.
        • Fraticelli L.
        • Claustre C.
        • Maegele M.
        • Inaba K.
        Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy?.
        Eur J Trauma Emerg Surg. 2022 Feb 3; (Epub ahead of print. PMID: 35118557)https://doi.org/10.1007/s00068-022-01882-6
        • Bilgiç İ.
        • Gelecek S.
        • Akgün A.E.
        • Özmen M.M.
        Evaluation of liver injury in a tertiary hospital: a retrospective study.
        Ulus Travma Acil Cerrahi Derg. 2014; 20 (PMID: 25541848): 359-365https://doi.org/10.5505/tjtes.2014.22074
        • Kautza B.C.
        • Cohen M.J.
        • Cuschieri J.
        • Minei J.P.
        • Brackenridge S.C.
        • Maier R.V.
        • Harbrecht B.G.
        • Moore E.E.
        • Billiar T.R.
        • Peitzman A.B.
        • Sperry J.L.
        Inflammation and the Host Response to Injury Investigators. Changes in massive transfusion over time: an early shift in the right direction?.
        J Trauma Acute Care Surg. 2012; 72 (PMID: 22310123; PMCID: PMC3276234): 106-111https://doi.org/10.1097/TA.0b013e3182410a3c
        • Torabi M.
        • Mazidi Sharaf Abadi F.
        • Baneshi M.R
        Blood sugar changes and hospital mortality in multiple trauma.
        Am J Emerg Med. 2018; 36 (Epub 2017 Oct 13. PMID: 29056393): 816-819https://doi.org/10.1016/j.ajem.2017.10.029
        • Stettler G.R.
        • Sumislawski J.J.
        • Moore E.E.
        • Nunns G.R.
        • Kornblith L.Z.
        • Conroy A.S.
        • Callcut R.A.
        • Silliman C.C.
        • Banerjee A.
        • Cohen M.J.
        • Sauaia A.
        Citrated kaolin thrombelastography (TEG) thresholds for goal-directed therapy in injured patients receiving massive transfusion.
        J Trauma Acute Care Surg. 2018; 85 (PMID: 30059456; PMCID: PMC6158094): 734-740https://doi.org/10.1097/TA.0000000000002037
        • Holcomb J.B.
        • Zarzabal L.A.
        • Michalek J.E.
        • Kozar R.A.
        • Spinella P.C.
        • Perkins J.G.
        • Matijevic N.
        • Dong J.F.
        • Pati S.
        • Wade C.E.
        • Group Trauma Outcomes
        • Holcomb J.B.
        • Wade C.E.
        • Cotton B.A.
        • Kozar R.A.
        • Brasel K.J.
        • Vercruysse G.A.
        • MacLeod J.B.
        • Dutton R.P.
        • Hess J.R.
        • Duchesne J.C.
        • McSwain N.E.
        • Muskat P.C.
        • Johannigamn J.A.
        • Cryer H.M.
        • Tillou A.
        • Cohen M.J.
        • Pittet J.F.
        • Knudson P.
        • DeMoya M.A.
        • Schreiber M.A.
        • Tieu B.H.
        • Brundage S.I.
        • Napolitano L.M.
        • Brunsvold M.E.
        • Sihler K.C.
        • Beilman G.J.
        • Peitzman A.B.
        • Zenati M.S.
        • Sperry J.L.
        • Alarcon L.H.
        • Croce M.A.
        • Minei J.P.
        • Steward R.M.
        • Cohn S.M.
        • Michalek J.E.
        • Bulger E.M.
        • Nunez T.C.
        • Ivatury R.R.
        • Meredith J.W.
        • Miller P.R.
        • Pomper G.J.
        • Marin B
        Increased platelet:RBC ratios are associated with improved survival after massive transfusion.
        J Trauma. 2011; 71 (PMID: 21814099): S318-S328https://doi.org/10.1097/TA.0b013e318227edbb
        • Kutcher M.E.
        • Kornblith L.Z.
        • Narayan R.
        • Curd V.
        • Daley A.T.
        • Redick B.J.
        • Nelson M.F.
        • Fiebig E.W.
        • Cohen M.J.
        A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices.
        JAMA Surg. 2013; 148 (PMID: 23864019): 834-840https://doi.org/10.1001/jamasurg.2013.2911
        • Coccolini F.
        • Ceresoli M.
        • McGreevy D.T.
        • Sadeghi M.
        • Pirouzram A.
        • Toivola A.
        • Skoog P.
        • Idoguchi K.
        • Kon Y.
        • Ishida T.
        • Matsumura Y.
        • Matsumoto J.
        • Reva V.
        • Maszkowski M.
        • Fugazzola P.
        • Tomasoni M.
        • Cicuttin E.
        • Ansaloni L.
        • Zaghi C.
        • Sibilla M.G.
        • Cremonini C.
        • Bersztel A.
        • Caragounis E.C.
        • Falkenberg M.
        • Handolin L.
        • Oosthuizen G.
        • Szarka E.
        • Manchev V.
        • Wannatoop T.
        • Chang S.W.
        • Kessel B.
        • Hebron D.
        • Shaked G.
        • Bala M.
        • Ordoñez C.A.
        • Hibert-Carius P.
        • Chiarugi M.
        • Nilsson K.F.
        • Larzon T.
        • Gamberini E.
        • Agnoletti V.
        • Catena F.
        • Hörer T.M.
        Aortic balloon occlusion (REBOA) in pelvic ring injuries: preliminary results of the ABO Trauma Registry.
        Updates Surg. 2020; 72 (Epub 2020 Mar 4. PMID: 32130669): 527-536https://doi.org/10.1007/s13304-020-00735-4
        • Johansson P.I.
        • Sørensen A.M.
        • Perner A.
        • Welling K.L.
        • Wanscher M.
        • Larsen C.F.
        • Ostrowski S.R.
        Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study.
        Crit Care. 2011; 15 (Epub 2011 Nov 17. PMID: 22087841; PMCID: PMC3388658): R272https://doi.org/10.1186/cc10553
        • Hilbert-Carius P.
        • Hofmann G.
        • Stuttmann R.
        Hämoglobinorientierter und gerinnungsfaktorbasierter Algorithmus": effekt auf Transfusionsbedarf und standardisierte Mortalitätsrate bei massivtransfusionspflichtigen Traumapatienten [Hemoglobin-oriented and coagulation factor-based algorithm : effect on transfusion needs and standardized mortality rate in massively transfused trauma patients].
        Anaesthesist. 2015; 64 (GermanEpub 2015 Oct 9. PMID: 26453580): 828-838https://doi.org/10.1007/s00101-015-0093-8
        • Holcomb J.B.
        • Minei K.M.
        • Scerbo M.L.
        • Radwan Z.A.
        • Wade C.E.
        • Kozar R.A.
        • Gill B.S.
        • Albarado R.
        • McNutt M.K.
        • Khan S.
        • Adams P.R.
        • McCarthy J.J.
        • Cotton B.A.
        Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients.
        Ann Surg. 2012; 256 (PMID: 22868371): 476-486https://doi.org/10.1097/SLA.0b013e3182658180
        • Kashuk J.L.
        • Moore E.E.
        • Sawyer M.
        • Wohlauer M.
        • Pezold M.
        • Barnett C.
        • Biffl W.L.
        • Burlew C.C.
        • Johnson J.L.
        • Sauaia A.
        Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma.
        Ann Surg. 2010; 252 (discussion 443-4PMID: 20739843): 434-442https://doi.org/10.1097/SLA.0b013e3181f09191
        • Hilbert-Carius P.
        • Hofmann G.O.
        • Lefering R.
        • Stuttmann R.
        • Struck MF
        Clinical presentation and blood gas analysis of multiple trauma patients for prediction of standard coagulation parameters at emergency department arrival.
        Anaesthesist. 2016; 65 (Epub 2016 Apr 8. PMID: 27059795): 274-280https://doi.org/10.1007/s00101-016-0150-y
        • O'Connor J.V.
        • DuBose J.J.
        • Scalea T.M.
        Damage-control thoracic surgery: management and outcomes.
        J Trauma Acute Care Surg. 2014; 77 (PMID: 25494414): 660-665https://doi.org/10.1097/TA.0000000000000451
        • Cotton B.A.
        • Faz G.
        • Hatch Q.M.
        • Radwan Z.A.
        • Podbielski J.
        • Wade C.
        • Kozar R.A.
        • Holcomb J.B.
        Rapid thrombelastography delivers real-time results that predict transfusion within 1 h of admission.
        J Trauma. 2011; 71 (discussion 414-7PMID: 21825945): 407-414https://doi.org/10.1097/TA.0b013e31821e1bf0
        • Peltan I.D.
        • Vande Vusse L.K.
        • Maier R.V.
        • Watkins T.R
        An International Normalized Ratio-Based Definition of Acute Traumatic Coagulopathy Is Associated With Mortality, Venous Thromboembolism, and Multiple Organ Failure After Injury.
        Crit Care Med. 2015; 43 (PMID: 25816119; PMCID: PMC4512212): 1429-1438https://doi.org/10.1097/CCM.0000000000000981
        • Lui C.T.
        • Wong O.F.
        • Tsui K.L.
        • Kam C.W.
        • Li S.M.
        • Cheng M.
        • Leung K.K.G.
        Predictive model integrating dynamic parameters for massive blood transfusion in major trauma patients: the Dynamic MBT score.
        Am J Emerg Med. 2018; 36 (Epub 2018 Jan 4. PMID: 29307764): 1444-1450https://doi.org/10.1016/j.ajem.2018.01.009
        • Leemann H.
        • Lustenberger T.
        • Talving P.
        • Kobayashi L.
        • Bukur M.
        • Brenni M.
        • Brüesch M.
        • Spahn D.R.
        • Keel M.J.
        The role of rotation thromboelastometry in early prediction of massive transfusion.
        J Trauma. 2010; 69 (discussion 1408-9PMID: 21150521): 1403-1408https://doi.org/10.1097/TA.0b013e3181faaa25
        • Tauber H.
        • Innerhofer P.
        • Breitkopf R.
        • Westermann I.
        • Beer R.
        • El Attal R.
        • Strasak A.
        • Mittermayr M.
        Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the 'Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study'.
        Br J Anaesth. 2011; 107 (Epub 2011 Jun 23. PMID: 21705350): 378-387https://doi.org/10.1093/bja/aer158
        • Hagemo J.S.
        • Christiaans S.C.
        • Stanworth S.J.
        • Brohi K.
        • Johansson P.I.
        • Goslings J.C.
        • Naess P.A.
        • Gaarder C.
        Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study.
        Crit Care. 2015; 19 (PMID: 25888032; PMCID: PMC4374411): 97https://doi.org/10.1186/s13054-015-0823-y
        • Davenport R.
        • Manson J.
        • De'Ath H.
        • Platton S.
        • Coates A.
        • Allard S.
        • Hart D.
        • Pearse R.
        • Pasi K.J.
        • MacCallum P.
        • Stanworth S.
        • Brohi K.
        Functional definition and characterization of acute traumatic coagulopathy.
        Crit Care Med. 2011; 39 (PMID: 21765358; PMCID: PMC3223409): 2652-2658https://doi.org/10.1097/CCM.0b013e3182281af5
        • Schöchl H.
        • Nienaber U.
        • Hofer G.
        • Voelckel W.
        • Jambor C.
        • Scharbert G.
        • Kozek-Langenecker S.
        • Solomon C.
        Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate.
        Crit Care. 2010; 14 (Epub 2010 Apr 7. PMID: 20374650; PMCID: PMC2887173): R55https://doi.org/10.1186/cc8948
        • Schöchl H.
        • Solomon C.
        • Traintinger S.
        • Nienaber U.
        • Tacacs-Tolnai A.
        • Windhofer C.
        • Bahrami S.
        • Voelckel W.
        Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury.
        J Neurotrauma. 2011; 28 (Epub 2011 Sep 23. PMID: 21942848): 2033-2041https://doi.org/10.1089/neu.2010.1744
        • Schöchl H.
        • Cotton B.
        • Inaba K.
        • Nienaber U.
        • Fischer H.
        • Voelckel W.
        • Solomon C.
        FIBTEM provides early prediction of massive transfusion in trauma.
        Crit Care. 2011; 15 (Epub 2011 Nov 11. PMID: 22078266; PMCID: PMC3388656): R265https://doi.org/10.1186/cc10539
        • Einersen P.M.
        • Moore E.E.
        • Chapman M.P.
        • Moore H.B.
        • Gonzalez E.
        • Silliman C.C.
        • Banerjee A.
        • Sauaia A.
        Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion.
        J Trauma Acute Care Surg. 2017; 82 (PMID: 27805995; PMCID: PMC5177474): 114-119https://doi.org/10.1097/TA.0000000000001270
        • Cotton B.A.
        • Harvin J.A.
        • Kostousouv V.
        • Minei K.M.
        • Radwan Z.A.
        • Schöchl H.
        • Wade C.E.
        • Holcomb J.B.
        • Matijevic N.
        Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration.
        J Trauma Acute Care Surg. 2012; 73 (discussion 370PMID: 22846941): 365-370https://doi.org/10.1097/TA.0b013e31825c1234
        • Ireland S.
        • Endacott R.
        • Cameron P.
        • Fitzgerald M.
        • Paul E.
        The incidence and significance of accidental hypothermia in major trauma–a prospective observational study.
        Resuscitation. 2011; 82 (Epub 2010 Nov 12. PMID: 21074927): 300-306https://doi.org/10.1016/j.resuscitation.2010.10.016
        • Weuster M.
        • Brück A.
        • Lippross S.
        • Menzdorf L.
        • Fitschen-Oestern S.
        • Behrendt P.
        • Iden T.
        • Höcker J.
        • Lefering R.
        • Seekamp A.
        • Klüter T.
        • TraumaRegister D.G.U.
        Epidemiology of accidental hypothermia in polytrauma patients: an analysis of 15,230 patients of the TraumaRegister DGU.
        J Trauma Acute Care Surg. 2016; 81 (PMID: 27533910): 905-912https://doi.org/10.1097/TA.0000000000001220
        • Aitken L.M.
        • Hendrikz J.K.
        • Dulhunty J.M.
        • Rudd M.J.
        Hypothermia and associated outcomes in seriously injured trauma patients in a predominantly sub-tropical climate.
        Resuscitation. 2009; 80 (Epub 2008 Dec 6. PMID: 19059696): 217-223https://doi.org/10.1016/j.resuscitation.2008.10.021
        • Wang H.E.
        • Callaway C.W.
        • Peitzman A.B.
        • Tisherman S.A.
        Admission hypothermia and outcome after major trauma.
        Crit Care Med. 2005; 33 (PMID: 15942347): 1296-1301https://doi.org/10.1097/01.ccm.0000165965.31895.80
        • Beilman G.J.
        • Blondet J.J.
        • Nelson T.R.
        • Nathens A.B.
        • Moore F.A.
        • Rhee P.
        • Puyana J.C.
        • Moore E.E.
        • Cohn S.M.
        Early hypothermia in severely injured trauma patients is a significant risk factor for multiple organ dysfunction syndrome but not mortality.
        Ann Surg. 2009; 249 (Erratum in: Ann Surg. 2009 Oct;250(4):661. PMID: 19387315): 845-850https://doi.org/10.1097/SLA.0b013e3181a41f6f
        • Martin R.S.
        • Kilgo P.D.
        • Miller P.R.
        • Hoth J.J.
        • Meredith J.W.
        • Chang M.C.
        Injury-associated hypothermia: an analysis of the 2004 National Trauma Data Bank.
        Shock. 2005; 24 (PMID: 16044080): 114-118https://doi.org/10.1097/01.shk.0000169726.25189.b1
        • Mommsen P.
        • Andruszkow H.
        • Frömke C.
        • Zeckey C.
        • Wagner U.
        • van Griensven M.
        • Frink M.
        • Krettek C.
        • Hildebrand F.
        Effects of accidental hypothermia on posttraumatic complications and outcome in multiple trauma patients.
        Injury. 2013; 44 (Epub 2011 Oct 30. PMID: 22040695): 86-90https://doi.org/10.1016/j.injury.2011.10.013
        • Shafi S.
        • Elliott A.C.
        • Gentilello L.
        Is hypothermia simply a marker of shock and injury severity or an independent risk factor for mortality in trauma patients?.
        J Trauma. 2005; 59 (Analysis of a large national trauma registry) (PMID: 16385283): 1081-1085https://doi.org/10.1097/01.ta.0000188647.03665.fd
        • Trentzsch H.
        • Huber-Wagner S.
        • Hildebrand F.
        • Kanz K.G.
        • Faist E.
        • Piltz S.
        • Lefering R.
        • TraumaRegistry D.G.U.
        Hypothermia for prediction of death in severely injured blunt trauma patients.
        Shock. 2012; 37 (PMID: 22249218): 131-139https://doi.org/10.1097/SHK.0b013e318245f6b2
        • Clifton G.L.
        • Miller E.R.
        • Choi S.C.
        • Levin H.S.
        Fluid thresholds and outcome from severe brain injury.
        Crit Care Med. 2002; 30 (PMID: 11940738): 739-745https://doi.org/10.1097/00003246-200204000-00003
        • Jiang J.Y.
        • Gao G.Y.
        • Li W.P.
        • Yu M.K.
        • Zhu C.
        Early indicators of prognosis in 846 cases of severe traumatic brain injury.
        J Neurotrauma. 2002; 19 (PMID: 12184856): 869-874https://doi.org/10.1089/08977150260190456
        • Juul N.
        • Morris G.F.
        • Marshall S.B.
        • Marshall L.F.
        Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial.
        J Neurosurg. 2000; 92 (PMID: 10616075): 1-6https://doi.org/10.3171/jns.2000.92.1.0001
        • Marmarou A.
        • Saad A.
        • Aygok G.
        • Rigsbee M.
        Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome.
        Acta Neurochir Suppl. 2005; 95 (PMID: 16463865): 277-280https://doi.org/10.1007/3-211-32318-x_57
        • Ratanalert S.
        • Phuenpathom N.
        • Saeheng S.
        • Oearsakul T.
        • Sripairojkul B.
        • Hirunpat S.
        ICP threshold in CPP management of severe head injury patients.
        Surg Neurol. 2004; 61 (discussion 434-5PMID: 15120212): 429-434https://doi.org/10.1016/S0090-3019(03)00579-2
        • Lannoo E.
        • Van Rietvelde F.
        • Colardyn F.
        • Lemmerling M.
        • Vandekerckhove T.
        • Jannes C.
        • De Soete G.
        Early predictors of mortality and morbidity after severe closed head injury.
        J Neurotrauma. 2000; 17 (PMID: 10833059): 403-414https://doi.org/10.1089/neu.2000.17.403
        • Chambers I.R.
        • Treadwell L.
        • Mendelow A.D.
        Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients.
        J Neurosurg. 2001; 94 (PMID: 11235944): 412-416https://doi.org/10.3171/jns.2001.94.3.0412
        • Balestreri M.
        • Czosnyka M.
        • Steiner L.A.
        • Schmidt E.
        • Smielewski P.
        • Matta B.
        • Pickard J.D.
        Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?.
        Acta Neurochir (Wien). 2004; 146 (Epub 2004 Feb 2. PMID: 14963745): 131-141https://doi.org/10.1007/s00701-003-0187-y
        • Schreiber M.A.
        • Aoki N.
        • Scott B.G.
        • Beck J.R.
        Determinants of mortality in patients with severe blunt head injury.
        Arch Surg. 2002; 137 (PMID: 11888450): 285-290https://doi.org/10.1001/archsurg.137.3.285
        • Martínez Casas I.
        • Amador Marchante M.A.
        • Paduraru M.
        • Fabregues Olea A.I.
        • Nolasco A.
        • Medina J.C
        Thorax Trauma Severity Score: is it reliable for Patient's Evaluation in a Secondary Level Hospital?.
        Bull Emerg Trauma. 2016; 4 (PMID: 27540549; PMCID: PMC4989041): 150-155
        • Daurat A.
        • Millet I.
        • Roustan J.P.
        • Maury C.
        • Taourel P.
        • Jaber S.
        • Capdevila X.
        • Charbit J.
        Thoracic Trauma Severity score on admission allows to determine the risk of delayed ARDS in trauma patients with pulmonary contusion.
        Injury. 2016; 47 (Epub 2015 Aug 29. PMID: 26358517): 147-153https://doi.org/10.1016/j.injury.2015.08.031
        • Aukema T.S.
        • Beenen L.F.
        • Hietbrink F.
        • Leenen L.P.
        Validation of the Thorax Trauma Severity Score for mortality and its value for the development of acute respiratory distress syndrome.
        Open Access Emerg Med. 2011; 3 (PMID: 27147852; PMCID: PMC4753967): 49-53https://doi.org/10.2147/OAEM.S22802
        • Kumari M.
        • Mathur P.
        • Aggarwal R.
        • Madan K.
        • Sagar S.
        • Gupta A.
        • Khurana S.
        • Sreenivas V.
        • Kumar S.
        Changes in extracellular cytokines in predicting disease severity and final clinical outcome of patients with blunt chest trauma.
        Immunobiology. 2021; 226 (Epub 2021 Mar 27. PMID: 33857690)152087https://doi.org/10.1016/j.imbio.2021.152087
        • Mommsen P.
        • Zeckey C.
        • Andruszkow H.
        • Weidemann J.
        • Frömke C.
        • Puljic P.
        • van Griensven M.
        • Frink M.
        • Krettek C.
        • Hildebrand F.
        Comparison of different thoracic trauma scoring systems in regards to prediction of post-traumatic complications and outcome in blunt chest trauma.
        J Surg Res. 2012; 176 (Epub 2011 Oct 5. PMID: 22099585): 239-247https://doi.org/10.1016/j.jss.2011.09.018
        • Okabe Y.
        Risk factors for prolonged mechanical ventilation in patients with severe multiple injuries and blunt chest trauma: a single center retrospective case-control study.
        Acute Med Surg. 2018; 5 (PMID: 29657729; PMCID: PMC5891117): 166-172https://doi.org/10.1002/ams2.331
        • Seok J.
        • Cho H.M.
        • Kim H.H.
        • Kim J.H.
        • Huh U.
        • Kim H.B.
        • Leem J.H.
        • Wang I.J.
        Chest Trauma Scoring Systems for Predicting Respiratory Complications in Isolated Rib Fracture.
        J Surg Res. 2019; 244 (Epub 2019 Jul 4. PMID: 31279998): 84-90https://doi.org/10.1016/j.jss.2019.06.009
        • Subhani S.S.
        • Muzaffar M.S.
        • Khan M.I.
        Comparison of outcome between low and high thoracic trauma severity score in blunt trauma chest patients.
        J Ayub Med Coll Abbottabad. 2014; 26 (PMID: 25672168): 474-477
        • Zahran M.R.
        • Elwahab A.A.E.M.A.
        • El Nasr M.M.A.
        • et al.
        Evaluation of the predictive value of thorax trauma severity score (TTSS) in thoracic-traumatized patients.
        Cardiothorac Surg. 2020; 28: 3https://doi.org/10.1186/s43057-020-0015-7
        • Sharma Amit
        • Rathore Shaitan
        • Verma Vijay
        • Yadav Parul
        A study to validate thoracic trauma severity score in chest trauma patients.
        International Surgery Journal. 2020; 7: 1526https://doi.org/10.18203/2349-2902.isj20201863
        • Elbaih Hamed
        • Adel
        • Elshapowry Islam
        • Kalil Nancy
        Evaluation of Thoracic Trauma Severity Score in Predicting the Outcome of Isolated Blunt Chest Trauma Patients.
        International Journal of Surgery and Medicine. 2016; 2: 100-106https://doi.org/10.5455/ijsm.chesttrauma
      1. E'Rezk, Moataz et al. “Assessment of Isolated Blunt Chest Trauma Patients in Benha University Hospital According to Thoracic Trauma Severity Score.” American Journal of Cardiovascular and Thoracic Surgery (2020): n. pag.

        • Roberts D.J.
        • Bobrovitz N.
        • Zygun D.A.
        • Ball C.G.
        • Kirkpatrick A.W.
        • Faris P.D.
        • Stelfox H.T.
        Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review.
        J Trauma Acute Care Surg. 2015; 78 (PMID: 26151522): 1187-1196https://doi.org/10.1097/TA.0000000000000647
        • Burkhardt M.
        • Nienaber U.
        • Pizanis A.
        • Maegele M.
        • Culemann U.
        • Bouillon B.
        • Flohé S.
        • Pohlemann T.
        • Paffrath T.
        • TraumaRegister D.G.U.
        German Pelvic Injury Register of the Deutsche Gesellschaft für Unfallchirurgie. Acute management and outcome of multiple trauma patients with pelvic disruptions.
        Crit Care. 2012; 16 (PMID: 22913820; PMCID: PMC3580753): R163https://doi.org/10.1186/cc11487
        • Burkhardt M.
        • Nienaber U.
        • Krause J.
        • Pizanis A.
        • Moersdorf P.
        • Culemann U.
        • Aghayev E.
        • Paffrath T.
        • Pohlemann T.
        • Holstein J.H.
        • Beckenregister D.G.U.
        TraumaRegister DGU®. Das komplexe Beckentrauma : matching des Beckenregisters DGU mit dem TraumaRegister DGU® [Complex pelvic traumas : data linkage of the German Pelvic Injury Register and the TraumaRegister DGU®].
        Unfallchirurg. 2015; 118 (GermanPMID: 24695812): 957-962https://doi.org/10.1007/s00113-014-2565-8
        • Burkhardt M.
        • Holstein J.H.
        • Moersdorf P.
        • Kristen A.
        • Lefering R.
        • Pohlemann T.
        • Pizanis A.
        • TraumaRegister D.G.U.
        Proper coding of the Abbreviated Injury Scale: can clinical parameters help as surrogates in estimating blood loss?.
        Eur J Trauma Emerg Surg. 2014; 40 (Epub 2013 Oct 5. PMID: 26816243): 473-479https://doi.org/10.1007/s00068-013-0335-x
        • Pfeifer R.
        • Kalbas Y.
        • Coimbra R.
        • Leenen L.
        • Komadina R.
        • Hildebrand F.
        • Halvachizadeh S.
        • Akhtar M.
        • Peralta R.
        • Fattori L.
        • Mariani D.
        • Hasler R.M.
        • Lefering R.
        • Marzi I.
        • Pitance F.
        • Osterhoff G.
        • Volpin G.
        • Weil Y.
        • Wendt K.
        • Pape H.C.
        Indications and interventions of damage control orthopedic surgeries: an expert opinion survey.
        Eur J Trauma Emerg Surg. 2021; 47 (Epub 2020 May 26. PMID: 32458046): 2081-2092https://doi.org/10.1007/s00068-020-01386-1
        • Maegele M.
        • Inaba K.
        • Rizoli S.
        • Veigas P.
        • Callum J.
        • Davenport R.
        • Fröhlich M.
        • Hess J.
        Konsensusgruppe zur Erarbeitung einer viskoelastizitätsbasierten Leitlinie zur frühen Gerinnungstherapie bei blutenden Schwerverletzten. Frühe viskoelastizitätsbasierte Gerinnungstherapie bei blutenden Schwerverletzten: bericht der Konsensusgruppe über die Konsensuskonferenz 2014 zur Erarbeitung einer S2k-Leitlinie [Early viscoelasticity-based coagulation therapy for severely injured bleeding patients: report of the consensus group on the consensus conference 2014 for formulation of S2k guidelines].
        Anaesthesist. 2015; 64 (GermanPMID: 26136120): 778-794https://doi.org/10.1007/s00101-015-0040-8
        • Coleman J.R.
        • Moore E.E.
        • Chapman M.P.
        • Banerjee A.
        • Silliman C.C.
        • Ghasabyan A.
        • Chandler J.
        • Samuels J.M.
        • Sauaia A.
        Rapid TEG efficiently guides hemostatic resuscitation in trauma patients.
        Surgery. 2018; 164 (Epub 2018 Jun 12. PMID: 29903508; PMCID: PMC6108915): 489-493https://doi.org/10.1016/j.surg.2018.04.029
        • Tanner L.
        • Neef V.
        • Raimann F.J.
        • Störmann P.
        • Marzi I.
        • Lefering R.
        • Zacharowski K.
        • Piekarski F.
        Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). Influence of anaemia in severely injured patients on mortality, transfusion and length of stay: an analysis of the TraumaRegister DGU®.
        Eur J Trauma Emerg Surg. 2022; 48 (Epub 2022 Jan 20. PMID: 35059750; PMCID: PMC9360071): 2741-2749https://doi.org/10.1007/s00068-021-01869-9
        • Roberts D.J.
        • Bobrovitz N.
        • Zygun D.A.
        • Ball C.G.
        • Kirkpatrick A.W.
        • Faris P.D.
        • Parry N.
        • Nicol A.J.
        • Navsaria P.H.
        • Moore E.E.
        • Leppäniemi A.K.
        • Inaba K.
        • Fabian T.C.
        • D'Amours S.
        • Brohi K.
        • Stelfox H.T
        Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: a content analysis and expert appropriateness rating study.
        J Trauma Acute Care Surg. 2015; 79 (PMID: 26402530): 568-579https://doi.org/10.1097/TA.0000000000000821
        • Pape H.C.
        • Remmers D.
        • Rice J.
        • Ebisch M.
        • Krettek C.
        • Tscherne H.
        Appraisal of early evaluation of blunt chest trauma: development of a standardized scoring system for initial clinical decision making.
        J Trauma. 2000; 49 (PMID: 11003329): 496-504https://doi.org/10.1097/00005373-200009000-00018
        • Vallier H.A.
        • Super D.M.
        • Moore T.A.
        • Wilber J.H.
        Do patients with multiple system injury benefit from early fixation of unstable axial fractures? The effects of timing of surgery on initial hospital course.
        J Orthop Trauma. 2013; 27: 405-412
        • Volpin G.
        • Pfeifer R.
        • Saveski J.
        • Hasani I.
        • Cohen M.
        • Pape H.C.
        Damage control orthopaedics in polytraumatized patients- current concepts.
        J Clin Orthop Trauma. 2021; 12 (Epub 2020 Nov 6. PMID: 33716431; PMCID: PMC7920204): 72-82https://doi.org/10.1016/j.jcot.2020.10.018
        • Scherer J.
        • Coimbra R.
        • Mariani D.
        • Leenen L.
        • Komadina R.
        • Peralta R.
        • Fattori L.
        • Marzi I.
        • Wendt K.
        • Gaarder C.
        • Pape H.C.
        • Pfeifer R.
        Standards of fracture care in polytrauma: results of a Europe-wide survey by the ESTES polytrauma section.
        Eur J Trauma Emerg Surg. 2022; (Epub ahead of print. PMID: 36227354)https://doi.org/10.1007/s00068-022-02126-3
        • Roberts D.J.
        • Bobrovitz N.
        • Zygun D.A.
        • Ball C.G.
        • Kirkpatrick A.W.
        • Faris P.D.
        • Brohi K.
        • D'Amours S.
        • Fabian T.C.
        • Inaba K.
        • Leppäniemi A.K.
        • Moore E.E.
        • Navsaria P.H.
        • Nicol A.J.
        • Parry N.
        • Stelfox H.T
        Indications for Use of Damage Control Surgery in Civilian Trauma Patients: a Content Analysis and Expert Appropriateness Rating Study.
        Ann Surg. 2016; 263 (PMID: 26445471): 1018-1027https://doi.org/10.1097/SLA.0000000000001347
        • Goodman M.D.
        • Makley A.T.
        • Hanseman D.J.
        • Pritts T.A.
        • Robinson B.R.
        All the bang without the bucks: defining essential point-of-care testing for traumatic coagulopathy.
        J Trauma Acute Care Surg. 2015; 79 (discussion 124PMID: 26091324; PMCID: PMC5558264): 117-124https://doi.org/10.1097/TA.0000000000000691
        • Davis J.W.
        • Kaups K.L.
        • Parks S.N.
        Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock.
        J Trauma. 1998; 44 (PMID: 9464758): 114-118https://doi.org/10.1097/00005373-199801000-00014
        • Pape H.C.
        • Moore E.E.
        • McKinley T.
        • Sauaia A.
        Pathophysiology in patients with polytrauma.
        Injury. 2022; 53 (Epub 2022 May 14. PMID: 35577600): 2400-2412https://doi.org/10.1016/j.injury.2022.04.009
        • Keel M.
        • Trentz O.
        Pathophysiology of polytrauma.
        Injury. 2005; 36 (PMID: 15910820): 691-709https://doi.org/10.1016/j.injury.2004.12.037
        • Volpin G.
        • Cohen M.
        • Assaf M.
        • Meir T.
        • Katz R.
        • Pollack S.
        Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients.
        Int Orthop. 2014; 38 (Epub 2014 Jan 9. PMID: 24402554; PMCID: PMC4037528): 1303-1309https://doi.org/10.1007/s00264-013-2261-2
        • Giannoudis P.V.
        • Veysi V.T.
        • Pape H.C.
        • Krettek C.
        • Smith M.R.
        When should we operate on major fractures in patients with severe head injuries?.
        Am J Surg. 2002; 183 (PMID: 11943123): 261-267https://doi.org/10.1016/s0002-9610(02)00783-3