Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures

Published:November 04, 2022DOI:


      • Accurate reduction for unstable pelvic fractures has been recognized as the cornerstone of treating unstable pelvic fractures.
      • Traditional minimally invasive fracture reduction needs continuous intraoperative fluoroscopy monitoring, leading to high intraoperative radiation exposure of the patient and medical staff.
      • Intelligent robot-assisted fracture reduction system can complete intelligent and minimally invasive fracture reduction for most patients with unstable pelvic fractures.
      • The robot-assisted fracture reduction system has intelligent reduction path planning and realizes stable pelvis control.
      • The robot-assisted fracture reduction system doesn't cause additional damage to the patient.



      Currently, minimally invasive internal fixation is recommended for the surgical treatment of unstable pelvic fractures. The premise and difficulty of minimally invasive internal fixation are minimally invasive reduction of fractures. This review aimed to investigate the indications, surgical strategy and techniques, safety, and efficacy of intelligent robot-assisted fracture reduction (RAFR) system of pelvic ring injuries.


      This retrospective study reviewed a case series from March 2021 to November 2021. A total of 22 patients with unstable pelvic fracture injuries underwent minimally invasive internal fixations. All pelvic ring fractures were reduced with our intelligent RAFR system. The robot system intelligently designs the optimal position and reduction path based on the patient's preoperative 3D CT. During the operation, the three-dimensional visualization of the fracture is realized through image registration, and the Robot completes the automatic reduction of the fracture. The global 3D point cloud error between the preoperative planning results and the actual postoperative reduction results was calculated. The postoperative reduction results of residual displacement were graded by the Matta Criteria.


      Minimally invasive closed reduction procedures were completed in all 22 cases with our RAFR system. The average global 3D point cloud reduction error between the preoperative planning results and the actual postoperative reduction results was 3.41mm±1.83mm. The mean residual displacement was 4.61mm±3.29mm. Given the Matta criteria, 16 cases were excellent, five were good, and one was fair, with an excellent and good rate of 95.5%.


      Our new pelvic fracture reduction robot system can complete intelligent and minimally invasive fracture reduction for most patients with unstable pelvic fractures. The system has intelligent reduction position and path planning and realizes stable pelvis control through a unique holding arm and a robotic arm. The operation process will not cause additional damage to the patient, which fully meets the clinical requirements. Our study demonstrated the safety and effectiveness of our robotic reduction system and its applicability and usability in clinical practice, thus paving the way towards Robot minimally invasive pelvic fracture surgeries.



      DOF (degree-of-freedom), CBCT (Cone-beam CT), 3D (three-dimensional), RAFR (robot-assisted fracture reduction)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Pereira S.J.
        • O'Brien D.P.
        • Luchette F.A.
        • Choe K.A.
        • Lim E.
        • Davis Jr., K.
        • et al.
        Dynamic helical computed tomography scan accurately detects hemorrhage in patients with pelvic fracture.
        Surgery. 2000; 128 (Oct): 678-685
        • Stahel P.F.
        • Hammerberg E.M.
        History of pelvic fracture management: a review.
        World J Emerg Surg. 2016; 11: 18
        • Vibert B.
        • Pailhé R.
        • Morin V.
        • Rubens-Duval B.
        • Saragaglia D.
        Navigation for lower limb alignment during internal fixation of complex tibial-plateau fractures.
        Orthop Traumatol Surg Res. 2018; 104 (Jun): 491-496
        • Verma V.
        • Sen R.K.
        • Tripathy S.K.
        • Aggarwal S.
        • Sharma S.
        Factors affecting quality of life after pelvic fracture.
        J Clin Orthop Trauma. 2020; 11 (Nov-Dec): 1016-1024
        • Matta J.M.
        Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury.
        J Bone Jt Surg Am. 1996; 78 (Nov): 1632-1645
        • Putnis S.E.
        • Pearce R.
        • Wali U.J.
        • Bircher M.D.
        • Rickman M.S.
        Open reduction and internal fixation of a traumatic diastasis of the pubic symphysis: one-year radiological and functional outcomes.
        J Bone Joint Surg Br. 2011; 93 (Jan): 78-84
        • Suzuki T.
        • Shindo M.
        • Soma K.
        • Minehara H.
        • Nakamura K.
        • Uchino M.
        • et al.
        Long-term functional outcome after unstable pelvic ring fracture.
        J Trauma. 2007; 63 (Oct): 884-888
        • Van den Bosch E.W.
        • Van der Kleyn R.
        • Hogervorst M.
        • Van Vugt A.B.
        Functional outcome of internal fixation for pelvic ring fractures.
        J Trauma. 1999; 47 (Aug): 365-371
        • Küper M.A.
        • Trulson A.
        • Minarski C.
        • Stuby F.
        • Stöckle U.
        • Konrads C.
        Risks and strategies to avoid approach-related complications during operative treatment of pelvic ring or acetabular fractures.
        Z Orthop Unfall. 2021; 159 (Apr): 144-152
        • Schweitzer D.
        • Zylberberg A.
        • Córdova M.
        • Gonzalez J.
        Closed reduction and iliosacral percutaneous fixation of unstable pelvic ring fractures.
        Injury. 2008; 39 (Aug): 869-874
        • Matta J.M.
        • Yerasimides J.G.
        Table-skeletal fixation as an adjunct to pelvic ring reduction.
        J Orthop Trauma. 2007; 21 (Oct): 647-656
        • Lefaivre K.A.
        • Starr A.J.
        • Reinert C.M.
        Reduction of displaced pelvic ring disruptions using a pelvic reduction frame.
        J Orthop Trauma. 2009; 23 (Apr): 299-308
        • Bellabarba C.
        • Ricci W.M.
        • Bolhofner B.R.
        Distraction external fixation in lateral compression pelvic fractures.
        J Orthop Trauma. 2006; 20 (Jan): S7-14
        • Gras F.
        • Marintschev I.
        • Wilharm A.
        • Klos K.
        • Mückley T.
        • Hofmann G.O.
        2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries–a case series.
        BMC Musculoskelet Disord. 2010; 11 (Jul 7): 153
        • Sun C.
        • Yang K.
        • Li H.
        • Cai X.
        Application of Robot System in total Hip arthroplsty.
        Chin. Med. J. 2018; 98: 3042-3044
        • Sun C.
        • Yang K.
        • Li H.
        • Cai X.
        Application of Robot System in knee arthroplasty.
        Chin. Med. J. 2018; 98: 1726-1728
        • Chen A.F.
        • Kazarian G.S.
        • Jessop G.W.
        • Makhdom A.
        Robotic technology in orthopaedic surgery.
        J Bone Joint Surg Am. 2018; 100 (Nov 21): 1984-1992
        • Thakkar S.C.
        • Thakkar R.S.
        • Sirisreetreerux N.
        • Carrino J.A.
        • Shafiq B.
        • Hasenboehler E.A.
        2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology.
        Int J Comput Assist Radiol Surg. 2017; 12 (Jan): 69-76
        • Dagnino G.
        • Georgilas I.
        • Köhler P.
        • Morad S.
        • Atkins R.
        • Dogramadzi S.
        Navigation system for robot-assisted intra-articular lower-limb fracture surgery.
        Int J Comput Assist Radiol Surg. 2016; 11 (Oct): 1831-1843
        • Du H.
        • Hu L.
        • Li C.
        • Wang T.
        • Zhao L.
        • Li Y.
        • et al.
        Advancing computer-assisted orthopaedic surgery using a hexapod device for closed diaphyseal fracture reduction.
        Int J Med Robot. 2015; 11 (Sep): 348-359
        • Zhao C.
        • Wang Y.
        • Wu X.
        • Zhu G.
        • Shi S.
        Design and evaluation of an intelligent reduction robot system for the minimally invasive reduction in pelvic fractures.
        J Orthop Surg Res. 2022; 17 (Apr 4): 205
        • Zhao C.
        • Cao Q.
        • Sun Xu
        • Wu X.
        • Zhu G.
        • Wang Y.
        Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures.
        Mendeley Data. 2022; (</Dataset>): V1
        • Jixuan L.K.X.
        • Chunpeng Z.
        • et al.
        An experiment investigation and fe simulation analysis on elastic traction method applied in the pelvic reduction.
        in: Proceedings of the 14th International Congress on Image and Signal Processing, BioMedicalEngineering and Informatics (CISP-BMEI 2021); Shanghai, China. 2021
        • Xuke G.Z.
        • Yu W.
        • Yubo F.
        • Xinbao W.
        • Junqiang W.
        • et al.
        Experimental study on elastic traction device to assist reduction of pelvic fracture.
        Beijing Biomed Eng. 2019; 38: 126-133
        • Ead M.S.
        • Westover L.
        • Polege S.
        • McClelland S.
        • Jaremko J.L.
        • Duke K.K.
        Virtual reconstruction of unilateral pelvic fractures by using pelvic symmetry.
        Int J Comput Assist Radiol Surg. 2020; 15 (Aug): 1267-1277
        • Lefaivre K.A.
        • Blachut P.A.
        • Starr A.J.
        • Slobogean G.P.
        • O'Brien P.J.
        Radiographic displacement in pelvic ring disruption: reliability of 3 previously described measurement techniques.
        J Orthop Trauma. 2014; 28 (Mar): 160-166
        • Mataliotakis G.I.
        • Giannoudis P.V.
        Radiological measurements for postoperative evaluation of quality of reduction of unstable pelvic ring fractures: advantages and limitations.
        Injury. 2011; 42 (Dec): 1395-1401
        • Yu Y.H.
        • Liu C.H.
        • Hsu Y.H.
        • Chou Y.C.
        • Chen I.J.
        • Wu C.C.
        Matta's criteria may be useful for evaluating and predicting the reduction quality of simultaneous acetabular and ipsilateral pelvic ring fractures.
        BMC Musculoskelet Disord. 2021; 22 (Jun 14): 544
        • Tornetta 3rd, P.
        • Matta J.M.
        Outcome of operatively treated unstable posterior pelvic ring disruptions.
        Clin Orthop Relat Res. 1996; (Aug): 186-193
        • Pastor T.
        • Tiziani S.
        • Kasper C.D.
        • Pape H.C.
        • Osterhoff G.
        Quality of reduction correlates with clinical outcome in pelvic ring fractures.
        Injury. 2019; 50 (Jun): 1223-1226
        • Mosheiff R.
        • Weil Y.
        • Peleg E.
        • Liebergall M.
        Computerised navigation for closed reduction during femoral intramedullary nailing.
        Injury. 2005; 36 (Jul): 866-870
        • Liodakis E.
        • Krettek C.
        • Hawi N.
        [Suitability of computer-assisted femoral intramedullary nailing for control of torsion and length: Systematic review of clinical studies].
        Unfallchirurg. 2018; 121 (Mar): 182-190
        • Kim W.Y.
        • Ko S.Y.
        Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose.
        Int J Med Robot. 2019; 15 (Apr): e1967
        • Li C.
        • Wang T.
        • Hu L.
        • Zhang L.
        • Du H.
        • Zhao L.
        • et al.
        A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
        Proc Inst Mech Eng H. 2015; 229 (Sep): 629-637
        • Jiménez-Delgado J.J.
        • Paulano-Godino F.
        • PulidoRam-Ramírez R.
        • Jiménez-Pérez J.R.
        Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends.
        Med Image Anal. 2016; 30 (May): 30-45
        • Zhao J.X.
        • Li C.
        • Ren H.
        • Hao M.
        • Zhang L.C.
        • Tang P.F.
        Evolution and current applications of robot-assisted fracture reduction: a comprehensive review.
        Ann Biomed Eng. 2020; 48 (Jan): 203-224
        • Christ A.B.
        • Hansen D.G.
        • Healey J.H.
        • Fabbri N.
        Computer-assisted surgical navigation for primary and metastatic bone malignancy of the pelvis: current evidence and future directions.
        HSS J. 2021; 17 (Oct): 344-350
        • Cristina Bignardi M.T.
        • Alberto L.A
        • Diana M.
        Pelvic manipulator for fractures reduction.
        Int J Mech Eng Technol. 2018; 9: 570-580
        • Du D.
        • Liu Z.
        • Omori S.
        • Kurita M.
        • Tomita T.
        • Sugamoto K.
        • et al.
        Computer-aided parachute guiding system for closed reduction of diaphyseal fractures.
        Int J Med Robot. 2014 Sep; 10: 325-331
        • Koo T.K.
        • Papuga M.O.
        A computer aided method for closed reduction of diaphyseal tibial fracture using projection images: a feasibility study.
        Comput Aided Surg. 2009; 14: 45-57
        • Kausch L.
        • Thomas S.
        • Kunze H.
        • Privalov M.
        • Vetter S.
        • Franke J.
        • et al.
        Toward automatic C-arm positioning for standard projections in orthopedic surgery.
        Int J Comput Assist Radiol Surg. 2020; 15 (Jul): 1095-1105
        • Nakajima Y.
        • Tashiro T.
        • Sugano N.
        • Yonenobu K.
        • Koyama T.
        • Maeda Y.
        • et al.
        Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center.
        IEEE Trans Biomed Eng. 2007; 54 (Sep): 1703-1706
        • Ron O.
        • Joskowicz L.
        • Milgrom C.
        • Simkin A.
        Computer-based periaxial rotation measurement for aligning fractured femur fragments from CT: a feasibility study.
        Comput Aided Surg. 2002; 7: 332-341
        • Tobolsky V.A.
        • Kurki H.K.
        • Stock JT.
        Patterns of directional asymmetry in the pelvis and pelvic canal.
        Am J Hum Biol. 2016; 28 (Nov): 804-810
        • Boulay C.
        • Tardieu C.
        • Bénaim C.
        • Hecquet J.
        • Marty C.
        • Prat-Pradal D.
        • et al.
        Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.
        J Anat. 2006; 208 (Jan): 21-33
        • Han R.
        • Uneri A.
        • Vijayan R.C.
        • Wu P.
        • Vagdargi P.
        • Sheth N.
        • et al.
        Fracture reduction planning and guidance in orthopaedic trauma surgery via multi-body image registration.
        Med Image Anal. 2021; 68 (Feb)101917
        • Crowl A.C.
        • Kahler DM.
        Closed reduction and percutaneous fixation of anterior column acetabular fractures.
        Comput Aided Surg. 2002; 7: 169-178
        • Zhao J.X.
        • Zhang L.C.
        • Su X.Y.
        • Zhao Z.
        • Zhao Y.P.
        • Sun G.F.
        • et al.
        Early experience with reduction of unstable pelvic fracture using a computer-aided reduction frame.
        Biomed Res Int. 2018; 20187297635
        • Han R.
        • Uneri A.
        • De Silva T.
        • Ketcha M.
        • Goerres J.
        • Vogt S.
        • et al.
        Atlas-based automatic planning and 3D-2D fluoroscopic guidance in pelvic trauma surgery.
        Phys Med Biol. 2019; 64 (May 2)095022
        • Han R.
        • Uneri A.
        • Ketcha M.
        • Vijayan R.
        • Sheth N.
        • Wu P.
        • et al.
        Multi-body 3D-2D registration for image-guided reduction of pelvic dislocation in orthopaedic trauma surgery.
        Phys Med Biol. 2020; 65 (Jul 17)135009
        • Gardner M.J.
        • Nork SE.
        Stabilization of unstable pelvic fractures with supraacetabular compression external fixation.
        J Orthop Trauma. 2007; 21 (Apr): 269-273
        • Chen H.
        • Zhang Q.
        • Wu Y.
        • Chang Z.
        • Zhu Z.
        • Zhang W.
        • et al.
        Achieve closed reduction of irreducible, unilateral vertically displaced pelvic ring disruption with an unlocking closed reduction technique.
        Orthop Surg. 2021; 13 (May): 942-948
        • Hermans E.
        • Biert J.
        • Edwards MJR.
        Epidemiology of pelvic ring fractures in a level 1 trauma center in the Netherlands.
        Hip Pelvis. 2017; 29 (Dec): 253-261
        • Switzer J.A.
        • Nork S.E.
        • Routt Jr., M.L.
        Comminuted fractures of the iliac wing.
        J Orthop Trauma. 2000; 14 (May): 270-276
        • Starr A.J.
        • Griffin D.R.
        • Reinert C.M.
        • Frawley W.H.
        • Walker J.
        • Whitlock S.N.
        • et al.
        Pelvic ring disruptions: prediction of associated injuries, transfusion requirement, pelvic arteriography, complications, and mortality.
        J Orthop Trauma. 2002; 16 (Sep): 553-561
        • Routt Jr., M.L.
        • Simonian P.T.
        Closed reduction and percutaneous skeletal fixation of sacral fractures.
        Clin Orthop Relat Res. 1996; (Aug): 121-128
        • Boudissa M.
        • Roudet A.
        • Fumat V.
        • Ruatti S.
        • Kerschbaumer G.
        • Milaire M.
        • et al.
        Part 1: outcome of posterior pelvic ring injuries and associated prognostic factors - a five-year retrospective study of one hundred and sixty five operated cases with closed reduction and percutaneous fixation.
        Int Orthop. 2020; 44 (Jun): 1209-1215