Advertisement

Mini-invasive approach vs. traditional open reduction for periprosthetic hip fracture osteosynthesis with the NCB® plate

Published:October 30, 2022DOI:https://doi.org/10.1016/j.injury.2022.10.015

      Highlights

      • LCP osteosynthesis is the treatment of choice in most hip PPFs. Even in VB2 osteosynthesis may be preferred in order to reduce surgical aggressiveness.
      • Minimally invasive approaches are non-inferior to open approaches. Since they have shown to reduce surgical time they are elected by many authors.
      • Mini-invasive approach is an unexplored alternative to MIPO and there is no data comparing mini-invasive versus open approach.
      • Mini-invasive approach in osteosynthesis of hip PFFs decreases operative time and intraoperative bleeding compared to an open approach.

      Abstract

      Background

      Postoperative hip periprosthetic fracture (PPF) is a frequent complication whose treatment does not achieve optimal results among eldery fragile patients. Locking compression plate (LCP) osteosynthesis is the gold standard treatment for Vancouver B1 and VC fractures and there is a growing consensus in doing the same with B2 fractures in patients with high comorbidity. Following that trend of being as non-aggressive as possible we investigated whether a mini-open (MO) approach would lead to better outcomes in LCP plate osteosynthesis of hip PFFs when compared to the traditional open approach.

      Methods

      We retrospectively evaluated a cohort of 43 VB1, VB2 or VC hip PPFs treated with non contact bridging (NCB®) plate osteosynthesis by two possible approaches. MO vs traditional open approach. The main objective was to assess whether MO approach decreases operative time, bleeding and local complications. The secondary objective was to demonstrate that this may have a positive effect on patient function.

      Results

      The mean age was 79.6 years old and 74.5% patients had an ASA score of III or IV. The surgical time was 148.53 min (SD 33.2) in the open approach versus 107.42 min (SD 25.6) in the MO, which was 31 min shorter (p<0.001). Hemoglobin dropped 0.9 points less, on average (p. 0.005) and 0.82 fewer blood concentrates were required (p. 0.022) with MO approach. There were no differences among complications but there was a trend towards greater independence and better mobility in the MO approach group with a postoperative Barthel of 74.37 (sd. 13.21) compared to the 66.67 points (sd. 13.7) in the traditional approach group.

      Conclusion

      MO approach in osteosynthesis of hip PFFs decreases operative time and intraoperative bleeding so it must be considered in fragile patients with high comorbidity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdel M.P.
        • Watts C.D.
        • Houdek M.T.
        • Lewallen D.G.
        • Berry D.J.
        Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience.
        Bone Joint J. 2016; (98B): 461-467https://doi.org/10.1302/0301-620X.98B4.37201
        • Abdel M.P.
        • Cottino U.
        • Mabry T.M.
        Management of periprosthetic femoral fractures following total hip arthroplasty: a review.
        Int Orthop Springer Verlag. 2015; https://doi.org/10.1007/s00264-015-2979-0
        • Patsiogiannis N.
        • Kanakaris N.K.
        • Giannoudis P.V.
        Periprosthetic hip fractures: an update into their management and clinical outcomes.
        EFORT Open Rev. 2021; 6: 75-92https://doi.org/10.1302/2058-5241.6.200050
        • Stoffel K.
        • Horn T.
        • Zagra L.
        • Mueller M.
        • Perka C.
        • Eckardt H.
        Periprosthetic fractures of the proximal femur: beyond the Vancouver classification.
        EFORT Open Rev. 2020; 5: 449-456https://doi.org/10.1302/2058-5241.5.190086
      1. Yasen, A.T., & Haddad, F.S. The management of type B1 periprosthetic femoral fractures: when to fix and when to revise. Int Orthop Springer Verlag 2015. 10.1007/s00264-014-2617-2.

        • Moazen M.
        • Mak J.H.
        • Etchels L.W.
        • Jin Z.
        • Wilcox R.K.
        • Jones A.C.
        • et al.
        Periprosthetic femoral fracture - a biomechanical comparison between vancouver type B1 and B2 fixation methods.
        J Arthroplasty. 2014; 29: 495-500https://doi.org/10.1016/j.arth.2013.08.010
        • Corten K.
        • Vanrykel F.
        • Bellemans J.
        • Reynders Frederix P.
        • Simon J.P.
        • Broos P.L.O.
        An algorithm for the surgical treatment of periprosthetic fractures of the femur around a well-fixed femoral component.
        J Bone Joint Surg - Ser B. 2009; 91: 1424-1430https://doi.org/10.1302/0301-620X.91B11.22292
        • Giaretta S.
        • Momoli A.
        • Porcelli G.
        • Micheloni G.M.
        Diagnosis and management of periprosthetic femoral fractures after hip arthroplasty.
        Injury. 2019; 50: S29-S33https://doi.org/10.1016/j.injury.2019.01.053
        • Joestl J.
        • Hofbauer M.
        • Lang N.
        • Tiefenboeck T.
        • Hajdu S.
        Locking compression plate versus revision-prosthesis for Vancouver type B2 periprosthetic femoral fractures after total hip arthroplasty.
        Injury. 2016; 47: 939-943https://doi.org/10.1016/j.injury.2016.01.036
        • Baum C.
        • Leimbacher M.
        • Kriechling P.
        • Platz A.
        • Cadosch D.
        Treatment of Periprosthetic Femoral Fractures Vancouver Type B2: revision Arthroplasty Versus Open Reduction and Internal Fixation With Locking Compression Plate.
        Geriatr Orthop Surg Rehabil. 2019; 10215145931987685https://doi.org/10.1177/2151459319876859
        • Boylan M.R.
        • Riesgo A.M.
        • Paulino C.B.
        • Slover J.D.
        • Zuckerman J.D.
        • Egol K.A.
        Mortality following periprosthetic proximal femoral fractures versus native hip fractures.
        J Bone Joint Surg - Am Vol. 2018; 100: 578-585https://doi.org/10.2106/JBJS.17.00539
        • Bhattacharyya T.
        • Chang D.
        • Meigs J.B.
        • Estok D.M.
        • Malchau H.
        Mortality after periprosthetic fracture of the femur.
        J Bone Joint Surg - Ser A. 2007; (89 A): 2658-2662https://doi.org/10.2106/JBJS.F.01538
        • Hoffmann M.F.
        • Lotzien S.
        • Schildhauer T.A.
        Outcome of periprosthetic femoral fractures following total hip replacement treated with polyaxial locking plate.
        Eur J Orthop Surg Traumatol. 2017; 27: 107-112https://doi.org/10.1007/s00590-016-1851-2
        • Herrera D.A.
        • Kregor P.J.
        • Cole P.A.
        • Levy B.A.
        • Jönsson A.
        • Zlowodzki M.
        Treatment of acute distal femur fractures above a total knee arthroplasty: systematic review of 415 cases (1981-2006).
        Acta Orthop. 2008; 79: 22-27https://doi.org/10.1080/17453670710014716
        • Lindahl H.
        • Malchau H.
        • Odén A.
        • Garellick G
        Risk factors for failure after treatment of a periprosthetic fracture of the femur.
        J Bone Joint Surg - Ser B. 2006; 88: 26-30https://doi.org/10.1302/0301-620X.88B1.17029
        • Slullitel P.A.
        • Garcia-Barreiro G.G.
        • Oñativia J.I.
        • Zanotti G.
        • Comba F.
        • Piccaluga F.
        • et al.
        Selected Vancouver B2 periprosthetic femoral fractures around cemented polished femoral components can be safely treated with osteosynthesis.
        Bone Joint J. 2021; (103-B): 1222-1230https://doi.org/10.1302/0301-620X.103B7.BJJ-2020-1809.R1
        • Cheng H.
        • Clymer J.W.
        • Po-Han Chen B.
        • Sadeghirad PhD B.
        • Ferko N.C.
        • Cameron C.G.
        • et al.
        Prolonged operative duration is associated with complications: a systematic review and meta-analysis.
        J Surg Res. 2018; (Academic Press Inc)https://doi.org/10.1016/j.jss.2018.03.022
        • Ruchholtz S.
        • El-Zayat B.
        • Kreslo D.
        • Bücking B.
        • Lewan U.
        • Krüger A.
        • et al.
        Less invasive polyaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur - a prospective study of 41 patients.
        Injury. 2013; 44: 239-248https://doi.org/10.1016/j.injury.2012.10.035
        • Borade A.
        • Sanchez D.
        • Kempegowda H.
        • Maniar H.
        • Pesantez R.F.
        • Suk M.
        • et al.
        Minimally invasive plate osteosynthesis for periprosthetic and interprosthetic fractures associated with knee arthroplasty: surgical technique and review of current literature.
        J Knee Surg. 2019; 32: 392-402https://doi.org/10.1055/s-0039-1683443
        • Ehlinger M.
        • Adam P.
        • Di Marco A.
        • Arlettaz Y.
        • Moor B.K.
        • Bonnomet F.
        Periprosthetic femoral fractures treated by locked plating: feasibility assessment of the mini-invasive surgical option. A prospective series of 36 fractures.
        Orthop Traumatol. 2011; 97: 622-628https://doi.org/10.1016/j.otsr.2011.01.017
        • Liu A.M.
        • Flores M.
        • Nadarajan P.
        Failure of Mennen femoral plate.
        Injury. 1995; 26: 202-203https://doi.org/10.1016/0020-1383(95)93503-A
        • Erhardt J.B.
        • Grob K.
        • Roderer G.
        • Hoffmann A.
        • Forster T.N.
        • Kuster M.S.
        Treatment of periprosthetic femur fractures with the non-contact bridging plate: a new angular stable implant.
        Arch Orthop Trauma Surg. 2008; 128: 409-416https://doi.org/10.1007/s00402-007-0396-6
        • Hoffmann M.F.
        • Lotzien S.
        • Schildhauer T.A.
        Outcome of periprosthetic femoral fractures following total hip replacement treated with polyaxial locking plate.
        Eur J Orthop Surg Traumatol. 2017; 27: 107-112https://doi.org/10.1007/s00590-016-1851-2
        • Hess F.
        • Knoth C.
        • Welter J.E.
        • Zettl R.
        • Dörr S.
        Polyaxial locking plate fixation in periprosthetic, peri-implant and distal shaft fractures of the femur: a comparison of open and less invasive surgical approaches.
        Acta Orthop Belg. 2020; 86: 46-53
        • Leng S.
        • Chen X.
        • Mao G.
        Frailty syndrome: an overview.
        Clin Interv Aging. 2014; 433https://doi.org/10.2147/cia.s45300
        • Bozic K.J.
        • Katz P.
        • Cisternas M.
        • Ono L.
        • Ries M.D.
        • Showstack J.
        Hospital resource utilization for primary and revision total hip arthroplasty.
        J Bone Joint Surg - Ser A. 2005; 87: 570-576https://doi.org/10.2106/JBJS.D.02121
        • Min B.W.
        • Cho C.H.
        • Son E.S.
        • Lee K.J.
        • Lee S.W.
        • Min K.K.
        Minimally invasive plate osteosynthesis with locking compression plate in patients with Vancouver type B1 periprosthetic femoral fractures.
        Injury. 2018; 49: 1336-1340https://doi.org/10.1016/j.injury.2018.05.020
        • Lee J.H.
        • Park K.C.
        • Lim S.J.
        • Kwon K.B.
        • Kim J.W.
        Surgical outcomes of simple distal femur fractures in elderly patients treated with the minimally invasive plate osteosynthesis technique: can percutaneous cerclage wiring reduce the fracture healing time?.
        Arch Orthop Trauma Surg. 2020; 140: 1403-1412https://doi.org/10.1007/s00402-020-03385-8
        • Farouk O.
        • Krettek C.
        • Miclau T.
        • Schandelmaier P.
        • Guy P.
        • Tscherne H.
        Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique?.
        J Orthop Trauma. 1999; 13: 401-406https://doi.org/10.1097/00005131-199908000-00002
        • Lindahl H.
        • Oden A.
        • Garellick G.
        • Malchau H.
        The excess mortality due to periprosthetic femur fracture. A study from the Swedish national hip arthroplasty register.
        Bone. 2007; 40: 1294-1298https://doi.org/10.1016/j.bone.2007.01.003
        • Siu A.L.
        • Penrod J.D.
        • Boockvar K.S.
        • Koval K.
        • Strauss E.
        • Morrison R.S.
        Early ambulation after hip fracture: effects on function and mortality.
        Arch Intern Med. 2006; 166: 766-771https://doi.org/10.1001/archinte.166.7.766
        • Pfeufer D.
        • Grabmann C.
        • Mehaffey S.
        • Keppler A.
        • Böcker W.
        • Kammerlander C.
        • et al.
        Weight bearing in patients with femoral neck fractures compared to pertrochanteric fractures: a postoperative gait analysis.
        Injury. 2019; 50: 1324-1328https://doi.org/10.1016/j.injury.2019.05.008