Advertisement

Optimizing fixation methods for stable and unstable intertrochanteric hip fractures treated with sliding hip screw or cephalomedullary nailing: A comparative biomechanical and finite element analysis study

Published:October 07, 2022DOI:https://doi.org/10.1016/j.injury.2022.10.006

      Abstract

      Background

      Despite recent advances in implants and surgical techniques, catastrophic and clinical failures in the treatment of intertrochanteric fractures continue to occur, with dire consequences in an overall frail population subset. The aim of the current study is to evaluate the effect of the factors under the surgeons’ control, namely fracture reduction and implant selection, on the biomechanical behavior of fracture fixation constructs.

      Material-Methods

      An experimental protocol was conducted with the use of instrumented sawbones, in order to validate the finite element models. The implants used were the Gamma3®and DHS systems. Subsequently, a series of scenaria were considered, including various reduction and implant angle combinations. Data were retrieved concerning the peak cancellous bone stresses around the hip screw and the volume of cancellous bone in the femoral head stressed at critical levels, as well as implant stresses and stresses on the cortical bone of the distal fragment.

      Results

      All stable fracture models displayed significantly decreased cancellous bone stresses and implant stresses compared to their unstable counterparts, regardless of implant used. The effect of increasing implant angle led to a decrease in implant stresses in all models studied, but had a beneficial effect on the stresses in the cancellous bone of the proximal fragment only in the subgroups of stable fractures with both implants and unstable fractures treated with a cephalomedullary nail (CMN). In unstable fractures anatomically reduced, the use of CMN led to significantly lower peak stresses in the cancellous bone and a smaller volume of bone stressed at critical levels. Increasing the reduction angle by 5 ° led to a significant decrease in both peak stresses and volume of bone stressed at critical levels, more prominent in the sliding hip screw (SHS) models. Decreasing the reduction angle into varus by 5 or 10 ° led to a significant increase in bone and implant stresses regardless of implant used.

      Conclusions

      In stable two-part (AO31.A2) fractures the use of the SHS appears to be biomechanically equivalent to CMN. In unstable, anatomically reduced fractures, the use of CMN leads to significantly reduced cancellous bone stresses and decreased rotation of the proximal fragment during loading.
      A reduction in varus should be avoided at all costs. In unstable fractures treated with SHS a reduction in slight valgus appears to be biomechanically beneficial. The highest implant angle that allows for proper screw position and trajectory in the femoral head should be used for stable fractures with both implants and unstable fractures treated with Gamma3®.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Veronese N.
        • Maggi S.
        Epidemiology and social costs of hip fracture.
        Injury. 2018; 49: 1458-1460https://doi.org/10.1016/j.injury.2018.04.015
        • Karagiannis A.
        • Papakitsou E.
        • Dretakis K.
        • Galanos A.
        • Megas P.
        • Lambiris E.
        • Lyritis G.P.
        Mortality rates of patients with a hip fracture in a southwestern district of greece: ten-year follow-up with reference to the type of fracture.
        Calcif Tissue Int. 2006; 78: 72-77https://doi.org/10.1007/s00223-005-0169-6
        • Stevens J.A.
        • Rudd R.A.
        The impact of decreasing U.S. hip fracture rates on future hip fracture estimates.
        Osteoporos Int. 2013; 24: 2725-2728https://doi.org/10.1007/s00198-013-2375-9
        • White S.M.
        • Griffiths R.
        Projected incidence of proximal femoral fracture in england: a report from the nhs hip fracture anaesthesia network (HIPFAN).
        Injury. 2011; 42: 1230-1233https://doi.org/10.1016/j.injury.2010.11.010
        • Dyer S.M.
        • Crotty M.
        • Fairhall N.
        • Magaziner J.
        • Beaupre L.A.
        • Cameron I.D.
        • Sherrington C.
        Fragility fracture network (FFN) rehabilitation research special interest group. a critical review of the long-term disability outcomes following hip fracture.
        BMC Geriatr. 2016; 16 (2): 158https://doi.org/10.1186/s12877-016-0332-0
        • Civinini R.
        • Paoli T.
        • Cianferotti L.
        • Cartei A.
        • Boccaccini A.
        • Peris A.
        • Brandi M.L.
        • Rostagno C.
        • Innocenti M.
        Functional outcomes and mortality in geriatric and fragility hip fractures-results of an integrated, multidisciplinary model experienced by the "Florence hip fracture unit".
        Int Orthop. 2019; 43: 187-192https://doi.org/10.1007/s00264-018-4132-3
        • Solou K.
        • Tyllianakis M.
        • Kouzelis A.
        • Lakoumentas J.
        • Panagopoulos A.
        Morbidity and mortality after second hip fracture with and without nursing care program.
        Cureus. 2022; 14: e23373https://doi.org/10.7759/cureus.23373
        • Meyer A.C.
        • Ek S.
        • Drefahl S.
        • Ahlbom A.
        • Hedström M.
        • Modig K.
        Trends in hip fracture incidence, recurrence, and survival by education and comorbidity: a swedish register-based study.
        Epidemio. 2021; 32 (1): 425-433https://doi.org/10.1097/EDE.0000000000001321
        • Papasimos S.
        • Koutsojannis C.M.
        • Panagopoulos A.
        • Megas P.
        • Lambiris E.
        A randomised comparison of AMBI, tgn and pfn for treatment of unstable trochanteric fractures.
        Arch Orthop Trauma Surg. 2005; 125: 462-468https://doi.org/10.1007/s00402-005-0021-5
        • Socci A.R.
        • Casemyr N.E.
        • Leslie M.P.
        • Baumgaertner M.R.
        Implant options for the treatment of intertrochanteric fractures of the hip: rationale, evidence, and recommendations.
        Bone Joint J. 2017; 99-B: 128-133https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0134.R1
        • Ma K.L.
        • Wang X.
        • Luan F.J.
        • Xu H.T.
        • Fang Y.
        • Min J.
        • Luan H.X.
        • Yang F.
        • Zheng H.
        • He S.J.
        Proximal femoral nails antirotation, gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: a meta-analysis.
        Orthop Traumatol Surg Res. 2014; 100: 859-866https://doi.org/10.1016/j.otsr.2014.07.023
        • Arirachakaran A.
        • Amphansap T.
        • Thanindratarn P.
        • Piyapittayanun P.
        • Srisawat P.
        • Kongtharvonskul J.
        Comparative outcome of PFNA, gamma nails, PCCP, medoff plate, liss and dynamic hip screws for fixation in elderly trochanteric fractures: a systematic review and network meta-analysis of randomized controlled trials.
        Eur J Orthop Surg Traumatol. 2017; 27: 937-952https://doi.org/10.1007/s00590-017-1964-2
        • Parker M.J.
        • Handoll H.H.
        Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults.
        Cochrane Database Syst Rev. 2010; 8CD000093https://doi.org/10.1002/14651858.CD000093.pub5
        • Barton T.M.
        • Gleeson R.
        • Topliss C.
        • Greenwood R.
        • Harries W.J.
        • Chesser T.J.
        A comparison of the long gamma nail with the sliding hip screw for the treatment of ao/ota 31-A2 fractures of the proximal part of the femur: a prospective randomized trial.
        J Bone Joint Surg Am. 2010; 92: 792-798https://doi.org/10.2106/JBJS.I.00508
        • Li A.B.
        • Zhang W.J.
        • Wang J.
        • Guo W.J.
        • Wang X.H.
        • Zhao Y.M.
        Intramedullary and extramedullary fixations for the treatment of unstable femoral intertrochanteric fractures: a meta-analysis of prospective randomized controlled trials.
        Int Orthop. 2017; 41 (Epub 2016 Oct 8. PMID: 27722824): 403-413https://doi.org/10.1007/s00264-016-3308-y
        • Baumgaertner M.R.
        • Curtin S.L.
        • Lindskog D.M.
        • Keggi J.M.
        The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip.
        J Bone Joint Surg Am. 1995; 77 (PMID: 7608228): 1058-1064https://doi.org/10.2106/00004623-199507000-00012
        • Caruso G.
        • Bonomo M.
        • Valpiani G.
        • Salvatori G.
        • Gildone A.
        • Lorusso V.
        • Massari L.
        A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: can the tip-apex distance (TAD) still be considered the best parameter?.
        Bone Joint Res. 2017; 6 (PMID: 28790037; PMCID: PMC5579311): 481-488https://doi.org/10.1302/2046-3758.68.BJR-2016-0299.R1
        • Selim A.
        • Ponugoti N.
        • Naqvi A.Z.
        • Magill H.
        Cephalo-medullary nailing versus dynamic hip screw with trochanteric stabilisation plate for the treatment of unstable per-trochanteric hip fractures: a meta-analysis.
        J Orthop Surg Res. 2021; 16 (11): 47https://doi.org/10.1186/s13018-020-02193-5
        • Tsai S.W.
        • Lin C.J.
        • Tzeng Y.H.
        • Lin C.C.
        • Huang C.K.
        • Chang M.C.
        • Chiang C.C.
        Risk factors for cut-out failure of gamma3 nails in treating unstable intertrochanteric fractures: an analysis of 176 patients.
        J Chin Med Assoc. 2017; 80: 587-594https://doi.org/10.1016/j.jcma.2017.04.007
        • Murena L.
        • Moretti A.
        • Meo F.
        • Saggioro E.
        • Barbati G.
        • Ratti C.
        • Canton G.
        Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients.
        Arch Orthop Trauma Surg. 2018; 138: 351-359https://doi.org/10.1007/s00402-017-2863-z
        • Bojan A.J.
        • Beimel C.
        • Taglang G.
        • Collin D.
        • Ekholm C.
        • Jönsson A
        Critical factors in cut-out complication after gamma nail treatment of proximal femoral fractures.
        BMC Musculoskelet Disord. 2013; 14 (2): 1https://doi.org/10.1186/1471-2474-14-1
        • Andruszkow H.
        • Frink M.
        • Frömke C.
        • Matityahu A.
        • Zeckey C.
        • Mommsen P.
        • Suntardjo S.
        • Krettek C.
        • Hildebrand F.
        Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures.
        Int Orthop. 2012; 36: 2347-2354https://doi.org/10.1007/s00264-012-1636-0
        • Marmor M.
        • Liddle K.
        • Buckley J.
        • Matityahu A.
        Effect of varus and valgus alignment on implant loading after proximal femur fracture fixation.
        Eur J Orthop Surg Traumatol. 2016; 26: 379-383https://doi.org/10.1007/s00590-016-1746-2
        • Georgiannos D.
        • Lampridis V.
        • Bisbinas I.
        Complications following treatment of trochanteric fractures with the gamma3 nail: is the latest version of gamma nail superior to its predecessor?.
        Surg Res Pract. 2014; 2014143598https://doi.org/10.1155/2014/143598
        • Kouzelis A.
        • Kravvas A.
        • Mylonas S.
        • Giannikas D.
        • Panagopoulos A.
        Double axis cephalocondylic fixation of stable and unstable intertrochanteric fractures: early results in 60 cases with the veronail system.
        Open Orthop J. 2014; 24: 60-68https://doi.org/10.2174/1874325001408010060
        • Neuerburg C.
        • Mehaffey S.
        • Gosch M.
        • Böcker W.
        • Blauth M.
        • Kammerlander C.
        Trochanteric fragility fractures: treatment using the cement-augmented proximal femoral nail antirotation.
        Oper Orthop Traumatol. 2016; 28 (English): 164-176https://doi.org/10.1007/s00064-016-0449-5
        • Wieser K.
        • Babst R.
        Fixation failure of the lcp proximal femoral plate 4.5/5.0 in patients with missing posteromedial support in unstable per-, inter-, and subtrochanteric fractures of the proximal femur.
        Arch Orthop Trauma Surg. 2010; 130: 1281-1287https://doi.org/10.1007/s00402-010-1074-7
        • Gardner M.P.
        • Chong A.C.
        • Pollock A.G.
        • Wooley P.H.
        Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
        Ann Biomed Eng. 2010; 38: 613-620https://doi.org/10.1007/s10439-009-9887-7
        • Lamb J.N.
        • Coltart O.
        • Adekanmbi I.
        • Pandit H.G.
        • Stewart T.
        Comparison of axial-rotational postoperative periprosthetic fracture of the femur in composite osteoporotic femur versus human cadaveric specimens: a validation study.
        Proc Inst Mech Eng H. 2022; 236: 973-978https://doi.org/10.1177/09544119221092842
        • Bergmann G.
        • Deuretzbacher G.
        • Heller M.
        • Graichen F.
        • Rohlmann A.
        • Strauss J.
        • Duda G.N.
        Hip contact forces and gait patterns from routine activities.
        J Biomech. 2001; 34: 859-871https://doi.org/10.1016/s0021-9290(01)00040-9
        • Ali A.A.
        • Cristofolini L.
        • Schileo E.
        • Hu H.
        • Taddei F.
        • Kim R.H.
        • Rullkoetter P.J.
        • Laz P.J.
        Specimen-specific modeling of hip fracture pattern and repair.
        J Biomech. 2014; 47: 536-543https://doi.org/10.1016/j.jbiomech.2013.10.033
        • Li J.
        • Han L.
        • Zhang H.
        • Zhao Z.
        • Su X.
        • Zhou J.
        • Li C.
        • Yin P.
        • Hao M.
        • Wang K.
        • Xu G.
        • Zhang L.
        • Zhang L.
        • Tang P.
        Medial sustainable nail versus proximal femoral nail antirotation in treating ao/ota 31-A2.3 fractures: finite element analysis and biomechanical evaluation.
        Injury. 2019; 50: 648-656https://doi.org/10.1016/j.injury.2019.02.008
        • Oken O.F.
        • Soydan Z.
        • Yildirim A.O.
        • Gulcek M.
        • Ozlu K.
        • Ucaner A.
        Performance of modified anatomic plates is comparable to proximal femoral nail, dynamic hip screw and anatomic plates: finite element and biomechanical testing.
        Injury. 2011; 42: 1077-1083https://doi.org/10.1016/j.injury.2011.03.014
        • Parker M.J.
        Valgus reduction of trochanteric fractures.
        Injury. 1993; 24: 313-316https://doi.org/10.1016/0020-1383(93)90053-9
        • Loch D.A.
        • Kyle R.F.
        • Bechtold J.E.
        • Kane M.
        • Anderson K.
        • Sherman R.E
        Forces required to initiate sliding in second-generation intramedullary nails.
        J Bone Joint Surg Am. 1998; 80: 1626-1631https://doi.org/10.2106/00004623-199811000-00009
        • Pajarinen J.
        • Lindahl J.
        • Savolainen V.
        • Michelsson O.
        • Hirvensalo E.
        Femoral shaft medialisation and neck-shaft angle in unstable pertrochanteric femoral fractures.
        Int Orthop. 2004; 28: 347-353https://doi.org/10.1007/s00264-004-0590-x
        • Pervez H.
        • Parker M.J.
        Vowler S. prediction of fixation failure after sliding hip screw fixation.
        Injury. 2004; 35: 994-998https://doi.org/10.1016/j.injury.2003.10.028
        • Morihara T.
        • Arai Y.
        • Tokugawa S.
        • Fujita S.
        • Chatani K.
        • Kubo T.
        Proximal femoral nail for treatment of trochanteric femoral fractures.
        J Orthop Surg (Hong Kong). 2007; 15: 273-277https://doi.org/10.1177/230949900701500305
        • Utrilla A.L.
        • Reig J.S.
        • Muñoz F.M.
        • Tufanisco C.B.
        Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail.
        J Orthop Trauma. 2005; 19: 229-233https://doi.org/10.1097/01.bot.0000151819.95075.ad
        • Zhu Y.
        • Meili S.
        • Zhang C.
        • Luo C.
        • Zeng B.F.
        Is the lag screw sliding effective in the intramedullary nailing in A1 and A2 ao-ota intertrochanteric fractures? a prospective study of sliding and none-sliding lag screw in gamma-iii nail.
        Scand J Trauma Resusc Emerg Med. 2012; 1: 60https://doi.org/10.1186/1757-7241-20-60
        • Wu C.C.
        • Tai C.L.
        Effect of lag-screw positions on modes of fixation failure in elderly patients with unstable intertrochanteric fractures of the femur.
        J Orthop Surg (Hong Kong). 2010; 18: 158-165https://doi.org/10.1177/230949901001800206
        • Eberle S.
        • Gerber C.
        • von Oldenburg G.
        • Hungerer S.
        • Augat P.
        Type of hip fracture determines load share in intramedullary osteosynthesis.
        Clin Orthop Relat Res. 2009; 467: 1972-1980https://doi.org/10.1007/s11999-009-0800-3
        • Gotfried Y.
        The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures.
        Clin Orthop Relat Res. 2004; (PMID: 15292791): 82-86
        • Babst R.
        • Renner N.
        • Biedermann M.
        • Rosso R.
        • Heberer M.
        • Harder F.
        • Regazzoni P.
        Clinical results using the trochanter stabilizing plate (TSP): the modular extension of the dynamic hip screw (DHS) for internal fixation of selected unstable intertrochanteric fractures.
        J Orthop Trauma. 1998; 12: 392-399https://doi.org/10.1097/00005131-199808000-00005
        • Gupta R.K.
        • Sangwan K.
        • Kamboj P.
        • Punia S.S.
        • Walecha P.
        Unstable trochanteric fractures: the role of lateral wall reconstruction.
        Int Orthop. 2010; 34: 125-129https://doi.org/10.1007/s00264-009-0744-y
        • Kyle R.F.
        • Gustilo R.B.
        • Premer R.F.
        Analysis of six hundred and twenty-two intertrochanteric hip fractures.
        J Bone Joint Surg Am. 1979; 61 (PMID: 422605): 216-221
        • Parry J.A.
        • Barrett I.
        • Schoch B.
        • Yuan B.
        • Cass J.
        • Cross W
        Does the angle of the nail matter for pertrochanteric fracture reduction? matching nail angle and native neck-shaft angle.
        J Orthop Trauma. 2018; 32: 174-177https://doi.org/10.1097/BOT.0000000000001096
        • Lobo-Escolar A.
        • Joven E.
        • Iglesias D.
        • Herrera A
        Predictive factors for cutting-out in femoral intramedullary nailing.
        Injury. 2010; 41: 1312-1316https://doi.org/10.1016/j.injury.2010.08.009
        • Goffin J.M.
        • Pankaj P.
        • Simpson A.H.
        The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study.
        J Orthop Res. 2013; 31: 596-600https://doi.org/10.1002/jor.22266
        • De Bruijn K.
        • den Hartog D.
        • Tuinebreijer W.
        • Roukema G.
        Reliability of predictors for screw cutout in intertrochanteric hip fractures.
        J Bone Joint Surg Am. 2012; 94 (18): 1266-1272https://doi.org/10.2106/JBJS.K.00357
        • Baumgaertner M.R.
        • Solberg B.D.
        Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip.
        J Bone Joint Surg Br. 1997; 79: 969-971https://doi.org/10.1302/0301-620x.79b6.7949
        • Kane P.
        • Vopat B.
        • Heard W.
        • Thakur N.
        • Paller D.
        • Koruprolu S.
        • Born C.
        Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement.
        Clin Orthop Relat Res. 2014; 472: 2492-2498https://doi.org/10.1007/s11999-014-3594-x
        • Hsueh K.K.
        • Fang C.K.
        • Chen C.M.
        • Su Y.P.
        • Wu H.F.
        • Chiu F.Y.
        Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients.
        Int Orthop. 2010; 34: 1273-1276https://doi.org/10.1007/s00264-009-0866-2
        • Ehmke L.W.
        • Fitzpatrick D.C.
        • Krieg J.C.
        • Madey S.M.
        • Bottlang M.
        Lag screws for hip fracture fixation: evaluation of migration resistance under simulated walking.
        J Orthop Res. 2005; 23: 1329-1335https://doi.org/10.1016/j.orthres.2005.05.002.1100230614
        • Lenich A.
        • Bachmeier S.
        • Prantl L.
        • Nerlich M.
        • Hammer J.
        • Mayr E.
        • et al.
        Is the rotation of the femoral head a potential initiation for cutting out? a theoretical and experimental approach.
        BMC Musculoskelet Disord. 2011; 22: 79https://doi.org/10.1186/1471-2474-12-79
        • Park S.Y.
        • Park J.
        • Rhee D.J.
        • Yoon H.K.
        • Yang K.H.
        Anterior or posterior obliquity of the lag screw in the lateral view–does it affect the sliding characteristics on unstable trochanteric fractures?.
        Injury. 2007; 38: 785-791https://doi.org/10.1016/j.injury.2007.03.010
        • Skála-Rosenbaum J.
        • Bartonícek J.
        • Bartoska R.
        Is distal locking with imhn necessary in every pertrochanteric fracture?.
        Int Orthop. 2010; 34: 1041-1047https://doi.org/10.1007/s00264-009-0874-2
        • Skála-Rosenbaum J.
        • Džupa V.
        • Bartoška R.
        • Douša P.
        • Waldauf P.
        • Krbec M.
        Distal locking in short hip nails: cause or prevention of peri-implant fractures?.
        Injury. 2016; 47: 887-892https://doi.org/10.1016/j.injury.2016.02.009
        • Buruian A.
        • Silva Gomes F.
        • Roseiro T.
        • Vale C.
        • Carvalho A.
        • Seiça E.
        • Mendes A.
        • Pereira C
        Distal interlocking for short trochanteric nails: static, dynamic or no locking? review of the literature and decision algorithm.
        EFORT Open Rev. 2020; 5 (1): 421-429https://doi.org/10.1302/2058-5241.5.190045