Advertisement

Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: Finite element study

Published:October 06, 2022DOI:https://doi.org/10.1016/j.injury.2022.10.003

      Abstract

      Purpose

      Ponticulus posticus (PP) is a variation of the bone bridge that appears in the first cervical vertebra and through which the vertebral artery passes. Odontoid fractures are common spinal bone fractures in older people. This study aims to investigate the effect of neck movements on the odontoid and transverse atlantal ligament (TAL) of people with PP variation from a biomechanical view.

      Method

      C1, C2, and C3 vertebrae of the occipital bone were analyzed using the finite element method (FEM). In this study, solid models were created with the help of normal (N), incomplete (IC), and asymmetric complete (AC) PP tomography images. The necessary elements for the models were assigned, and the material properties were defined for the elements. As boundary conditions, models were fixed from the C3 vertebra, and 74 N loading was applied from the occipital bone. Stress and deformation values in the odontoid and transverse atlantal ligament were obtained by applying 1.8 Nm moment in flexion, extension, bending, and axial rotation directions.

      Results

      The stress and deformation values of all three models in odontoid and TAL were obtained, and numerical results were evaluated. In all models, stress and deformation values were obtained in decreasing order in rotation, bending, extension, and flexion movements. The highest stress and strain values were obtained in AC and the lowest values were obtained in N. In all movements of the three models, the stress and deformation values obtained in the TAL were lower than in the odontoid.

      Conclusion

      The greatest stresses and deformations obtained in spines (AC) with PP were found in the odontoid. This may help explain the pathogenesis of odontoid fractures in older people. First, this study explains the mechanism of the formation of neck trauma in people with PP and the need for a more careful evaluation of the direction of impact. Secondly, the study reveals that the rotational motion of the neck independent of PP has more negative effects on the odontoid.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Xu X.
        • Zhu Y.
        • Ding X.
        • Yin M.
        • Mo W.
        • Ma J.
        Research progress of ponticulus posticus: a narrative literature review.
        Front Surg. 2022; 9 (PMID:35392059PMCID: PMC8980277)834551https://doi.org/10.3389/fsurg.2022.834551
        • Giri J.
        • Pokharel P.R.
        • Gyawali R.
        How common is ponticulus posticus on lateral cephalograms?.
        BMC Res Notes. 2017; 10 (PMID:28454552PMCID: PMC5410104): 172https://doi.org/10.1186/s13104-017-2494-z
        • Cho Y.J.
        Radiological analysis of ponticulus posticus in Koreans.
        Yonsei Med J. 2009; 50 (Epub 2009 Feb 24PMID:19259347PMCID: PMC2649851): 45-49https://doi.org/10.3349/ymj.2009.50.1.45
        • Putrino A.
        • Leonardi R.M.
        • Barbato E.
        • Galluccio G.
        The association between ponticulus posticus and dental agenesis: a retrospective study.
        Open Dent J. 2018; 12 (PMID:30197690PMCID: PMC6110062): 510-519https://doi.org/10.2174/1874210601812010510
        • Ríos L.
        • Mata-Escolano F.
        • Blanco-Pérez E.
        • Llidó S.
        • Bastir M.
        • Sanchis-Gimeno J.A.
        Acute headache attributed to whiplash in arcuate foramen and non-arcuate foramen subjects.
        Eur Spine J. 2017; 26 (Epub 2016 Nov 7. PMID:27822776): 1262-1265https://doi.org/10.1007/s00586-016-4856-y
        • Natsis K.
        • Piperaki E.T.
        • Fratzoglou M.
        • Lazaridis N.
        • Tsitsopoulos P.P.
        • Samolis Α.
        • Kostares M.
        • Piagkou M.
        Atlas posterior arch and vertebral artery's groove variants: a classification, morphometric study, clinical and surgical implications.
        Surg Radiol Anat. 2019; 41 (Epub 2019 Jun 6PMID:31172259): 985-1001https://doi.org/10.1007/s00276-019-02256-1
        • Ozdemir B.
        • Kanat A.
        • Durmaz S.
        • Ersegun Batcik O.
        • Gundogdu H
        Introducing a new possible predisposing risk factor for odontoid type 2 fractures after cervical trauma; ponticulus posticus anomaly of C1 vertebra.
        J Clin Neurosci. 2022; 96 (Epub 2021 Nov 25PMID:34840095): 194-198https://doi.org/10.1016/j.jocn.2021.11.013
        • Robinson A.L.
        • Olerud C.
        • Robinson Y.
        Epidemiology of C2 fractures in the 21st century: a national rRegistry cohort study of 6,370 patients from 1997 to 2014.
        Adv Orthop. 2017; 2017 (Epub 2017 Oct 17. PMID:29181200PMCID: PMC5664209)6516893https://doi.org/10.1155/2017/6516893
        • Kirankumar M.V.
        • Behari S.
        • Salunke P.
        • Banerji D.
        • Chhabra D.K.
        • Jain V.K.
        Surgical management of remote, isolated type II odontoid fractures with atlantoaxial dislocation causing cervical compressive myelopathy.
        Neurosurgery. 2005; 56 (PMID:15854248): 1004-1012
        • Müller E.J.
        • Wick M.
        • Russe O.
        • Muhr G.
        Management of odontoid fractures in the elderly.
        Eur Spine J. 1999; 8: 360-365
        • Bunmaprasert T.
        • Trirattanapikul V.
        • Sugandhavesa N.
        • Phanphaisarn A.
        • Liawrungrueang W.
        • Phinyo P.
        Reducible nonunited type II odontoid fracture with atlantoaxial instability: outcomes of two different fixation techniques.
        Int J Environ Res Public Health. 2021; 18 (PMID:34360289PMCID: PMC8345345): 7990https://doi.org/10.3390/ijerph18157990
        • Shafafy R.
        • Valsamis E.M.
        • Luck J.
        • Dimock R.
        • Rampersad S.
        • Kieffer W.
        • Morassi G.L.
        • Elsayed S.
        Predictors of mortality in the elderly patient with a fracture of the odontoid process.
        Bone Joint J. 2019; 101-B (PMID:30813791): 253-259https://doi.org/10.1302/0301-620X.101B3.BJJ-2018-1004.R1
        • Patel A.
        • Smith H.E.
        • Radcliff K.
        • Yadlapalli N.
        • Vaccaro A.R.
        Odontoid fractures with neurologic deficit have higher mortality and morbidity.
        Clin Orthop Relat Res. 2012; 470 (PMID:21830169PMCID: PMC3348312): 1614-1620https://doi.org/10.1007/s11999-011-1994-8
        • Puttlitz C.M.
        • Goel V.K.
        • Clark C.R.
        • Traynelis V.C.
        Pathomechanisms of failures of the odontoid.
        Spine (Phila Pa 1976). 2000; 25 (PMID:11074672): 2868-2876https://doi.org/10.1097/00007632-200011150-00006
        • Lakshmanan P.
        • Jones A.
        • Howes J.
        • Lyons K.
        CT evaluation of the pattern of odontoid fractures in the elderly–relationship to upper cervical spine osteoarthritis.
        Eur Spine J. 2005; 14 (Epub 2004 Jun 15PMID:15723251PMCID: PMC3476682): 78-83https://doi.org/10.1007/s00586-004-0743-z
        • Liebsch C.
        • Wilke H.J.
        Which traumatic spinal injury creates which degree of instability? A systematic quantitative review.
        Spine J. 2022; 22 (Epub 2021 Jun 8. PMID:34116217): 136-156https://doi.org/10.1016/j.spinee.2021.06.004
        • Rao S.K.
        • Wasyliw C.
        • Nunez Jr., D.B.
        Spectrum of imaging findings in hyperextension injuries of the neck.
        Radiographics. 2005; 25 (PMID:16160109): 1239-1254https://doi.org/10.1148/rg.255045162
        • Terzi M.
        • Güvercin Y.
        • Ates¸ S.M.
        • Sekban D.M.
        • Yaylacı M.
        Effect of different abutment materials on stress distrıbution in peripheral bone and dental implant system.
        Sigma J Eng Nat Sci. 2020; 38: 1495-1507
        • Güvercin Y.
        • Yaylacı M.
        • Ölmez H.
        • Uzun Yaylacı E.
        • Özdemir M.E.
        • Dizdar A.
        Finite element analysis of the mechanical behavior of the different angle hip femoral stem.
        Biomater Biomech Bioeng. 2022; 6: 29-46https://doi.org/10.12989/bme.2022.6.1.029
        • Oh Y.
        • Wakabayashi Y.
        • Kurosa Y.
        • Fujita K.
        • Okawa A.
        Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: mechanical analysis by the CT-based finite element method.
        Injury. 2014; 45: 1764-1771https://doi.org/10.1016/j.injury.2014.08.037
        • Zheng L.
        • Shi H.
        • Feng Y.
        • Sun B.S.
        • Ding H.Y.
        • Zhang G.Y.
        Injury patterns of medial patellofemoral ligament and correlation analysis with articular cartilage lesions of the lateral femoral condyle after acute lateral patellar dislocation in children and adolescents: an MRI evaluation.
        Injury. 2015; 46: 1137-1144https://doi.org/10.1016/j.injury.2015.02.001
        • Jang C.Y.
        • Bang S.H.
        • Kim W.H.
        • Lee S.J.
        • Lee H.M.
        • Kwak D.K.
        • Yoo J.H.
        Effect of fracture levels on the strength of bone-implant constructs in subtrochanteric fracture models fixed using short cephalomedullary nails: a finite element analysis.
        Injury. 2019; 50: 1883-1888https://doi.org/10.1016/j.injury.2019.08.014
        • Güvercin Y.
        • Abdioğlu A.A.
        • Dizdar A.
        • Uzun Yaylacı E.
        • Yaylacı M
        Suture button fixation method used in the treatment of syndesmosis injury: a biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method.
        Injury. 2022; 53 (doi: 10.1016/j.injury.2022.05.037): 2437-2445https://doi.org/10.1016/j.injury.2022.05.037
        • Abd Aziz A.U.
        • Abdul Wahab A.H.
        • Abdul Rahim R.A.
        • Abdul Kadir M.R.
        • Ramlee M.H
        A finite element study: finding the best configuration between unilateral, hybrid, and ilizarov in terms of biomechanical point of view.
        Injury. 2020; 51: 2474-2478https://doi.org/10.1016/j.injury.2020.08.001
        • Hamilton S.W.
        • Aboud H.
        Finite element analysis, mechanical assessment and material comparison of two volar slab constructs.
        Injury. 2009; 40: 397-399https://doi.org/10.1016/j.injury.2008.09.027
        • Pałka Ł.
        • Kuryło P.
        • Klekiel T.
        • Pruszyński P.
        A mechanical study of novel additive manufactured modular mandible fracture fixation plates - Preliminary Study with finite element analysis.
        Injury. 2020; 51: 1527-1535https://doi.org/10.1016/j.injury.2020.03.057
        • Lasswell T.L.
        • Cronin D.S.
        • Medley J.B.
        • Rasoulinejad P.
        Incorporating ligament laxity in a finite element model for the upper cervical spine.
        Spine J. 2017; 17 (Epub 2017 Jun 30PMID:28673824): 1755-1764https://doi.org/10.1016/j.spinee.2017.06.040
        • Wang X.D.
        • Feng M.S.
        • Hu Y.C.
        Establishment and finite element analysis of a three-dimensional dynamic model of upper cervical spine ınstability.
        Orthop Surg. 2019; 11 (PMID:31243925PMCID: PMC6595113): 500-509https://doi.org/10.1111/os.12474
        • Wang H.W.
        • Ma L.P.
        • Yin Y.H.
        • Yu X.G.
        • Meng C.L.
        Biomechanical rationale for the development of atlantoaxial ınstability and basilar ınvagination in patients with occipitalization of the atlas: a finite element analysis.
        World Neurosurg. 2019; 127 (Epub 2019 Mar 26. PMID:): e474-e479https://doi.org/10.1016/j.wneu.2019.03.174
      1. Mimics Innovation Suite 24.0 (Materialise, Belgium, Leuven).

      2. 3-Matic 16.0 ((Materialise, Belgium, Leuven)

        • Panjabi M.M.
        • Oxland T.R.
        • Parks E.H.
        Quantitative anatomy of cervical spine ligaments. Part I. upper cervical spine.
        J Spinal Disord. 1991; 4: 270-276
        • Netter F.H.
        Atlas of human anatomy, professional edition E-Book: including netterreference.com access with full downloadable image bank.
        Elsevier Health Sciences, Amsterdam, Netherlands2014
        • Brolin K.
        • Halldin P.
        Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
        Spine (Phila Pa 1976). 2004; 29 (PMID:15094533): 376-385https://doi.org/10.1097/01.brs.0000090820.99182.2d
        • Nişanci G.N.
        • Güvercin Y.
        • Ateş¸ S.M.
        • Ölmez H.
        • Yaylacı E.U.
        • Yaylacı M.
        Investigation of the effect of different prosthesis designs and numbers on stress, strain and deformation distribution.
        Int J Appl Sci Eng. 2020; 12 (doi.org/): 138-152https://doi.org/10.24107/ijeas.816227
        • Güvercin Y.
        • Yaylacı M.
        İnsan ve Koyun femur kemiğinin sonlu elemanlar yöntemiyle karşılaştırılması.
        J Anatolian Environ Anim Sci. 2021; 6: 599-603https://doi.org/10.35229/jaes.948214
        • Shao B.
        • Xing J.
        • Zhao B.
        • Wang T.
        • Mu W.
        Role of the proximal tibiofibular joint on the biomechanics of the knee joint: a three-dimensional finite element analysis.
        Injury. 2022; 53: 2446-2453https://doi.org/10.1016/j.injury.2022.05.027
        • Li T.
        • Yang Z.Z.
        • Peng M.Z.
        • Zhou X.J.
        • Liu Z.Y.
        • Rui B.Y.
        • Li Q.
        • Guo S.C.
        • Xiao M.
        • Wang J.W.
        Reimplantation of an extruded osteoarticular segment of the femur: case series and in vitro study in a rat model.
        Injury. 2017; 48: 2426-2432https://doi.org/10.1016/j.injury.2017.09.024
      3. ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.

        • Moroney S.P.
        • Schultz A.B.
        • Miller J.A.
        Andersson GB. Load–displacement properties of lower cervical spine motion segments.
        J Biomech. 1988; 21: 769-779https://doi.org/10.1016/0021-9290(88)90285-0
        • Osterhoff G.
        • Hoch A.
        • Wanner G.A.
        • Simmen H.P.
        • Werner C.M.L.
        Calcar comminution as prognostic factor of clinical outcome after locking plate fixation of proximal humeral fractures.
        Injury. 2012; 43: 1651-1656https://doi.org/10.1016/j.injury.2012.04.015
        • Nagashima H.
        • Morio Y.
        • Hasegawa K.
        • Teshima R.
        Odontoid fractures complicated by fractures of the posterior arch of the atlas in the elderly over 85 years with severe thoracic kyphosis secondary to osteoporosis.
        Injury. 2001; 32 (PMID:11476819): 501-504https://doi.org/10.1016/s0020-1383(01)00040-7
        • Jung M.K.
        • von Ehrlich-Treuenstätt G.V.R.
        • Jung A.L.
        • Keil H.
        • Grützner P.A.
        • Schneider N.R.E.
        • Kreinest M.
        Evaluation of external stabilization of type II odontoid fractures in geriatric patients-An experimental study on a newly developed cadaveric trauma model.
        PLoS ONE. 2021; 16 (PMID:34843595PMCID: PMC8629171)e0260414https://doi.org/10.1371/journal.pone.0260414
        • Nightingale R.W.
        • Carol Chancey V.
        • Ottaviano D.
        • Luck J.F.
        • Tran L.
        • Prange M.
        • Myers B.S
        Flexion and extension structural properties and strengths for male cervical spine segments.
        J Biomech. 2007; 40 (Epub 2006 Apr 18PMID:16620838): 535-542https://doi.org/10.1016/j.jbiomech.2006.02.015
        • Yoganandan N.
        • Pintar F.A.
        Odontoid fracture in motor vehicle environments.
        Accid Anal Prev. 2005; 37 (PMID:15784204): 505-514https://doi.org/10.1016/j.aap.2005.01.002
        • Dickman C.A.
        • Mamourian A.
        • Sonntag V.K.
        • Drayer B.P.
        Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability.
        J Neurosurg. 1991; 75 (PMID:2072158): 221-227https://doi.org/10.3171/jns.1991.75.2.0221
        • Woods R.O.
        • Inceoglu S.
        • Akpolat Y.T.
        • Cheng W.K.
        • Jabo B.
        • Danisa O.
        C1 lateral mass displacement and transverse atlantal ligament failure in jefferson's fracture: a biomechanical study of the “rule of spence”.
        Neurosurgery. 2018; 82 (PMID:28431136): 226-231https://doi.org/10.1093/neuros/nyx194
        • Sayama C.M.
        • Fassett D.R.
        • Apfelbaum R.I.
        The utility of MRI in the evaluation of odontoid fractures.
        J Spinal Disord Tech. 2008; 21 (PMID:18836366): 524-526https://doi.org/10.1097/BSD.0b013e31815adeb5