Advertisement
Research Article| Volume 53, ISSUE 7, P2437-2445, July 2022

Download started.

Ok

Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method

      Abstract

      Purpose

      The purpose of this study is to research the effect of suture button (SB) fixation, a method used at the treatment of ankle syndesmosis injury, which was applied in various angles, pretension force, and levels, on the distal tibiofibular joint (DTFJ) in the mid-stance phase, with the help of three-dimensional finite elements method (FEM)

      Method

      The ankle of a healthy individual was digitally analyzed by a finite element method-based package computer program. Then, anterior inferior tibiofibular ligament (AITFL), interosseous ligament, posterior inferior tibiofibular ligament (PITFL) and deltoid ligament (DL) were cut and force and rotation has been applied to the proximal tibia, resulting in syndesmosis injury. Then, various suture button applications on the injured model have been analyzed. Three parameters have been changed; which were divergence in the axial plane (20°, 30°, 40°), distance from the ankle (2, 3, 4 cm), and pretension force (200, 300, 600 N)

      Results

      As the result of this study, the rotation, change in the gap between the distal tibia and distal fibula, and the displacements of the fibula in the x and y axes have been obtained, and numerical results were evaluated. As the force increased, rotation, change in the gap between the distal tibia and distal fibula, and the displacements of the fibula decreased. As suture button application rotation increased, change in the gap between the distal tibia and distal fibula, and displacements of the fibula increased. As the distance from the ankle increases and reaches a certain level, the results converge to those of the healthy model; in the proximal, it diverges from healthy results.

      Conclusion

      In the study, it has been shown that abnormal tibiofibular joint movements can be prevented with suture button application, and optimum application parameters (divergence in the axial plane, distance from the ankle, and pretension force) are given for proper reduction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dattani R.
        • Patnaik S.
        • Kantak A.
        • Srikanth B.
        • Selvan T.P.
        Injuries to the tibiofibular syndesmosis.
        J Bone Joint Surg Br. 2008; 90: 405-410https://doi.org/10.1302/0301-620X.90B4.19750
        • Fallat L.
        • Grimm D.J.
        • Saracco J.A.
        Sprained ankle syndrome: prevalence and analysis of 639 acute injuries.
        J Foot Ankle Surg. 1998; 37: 280-285https://doi.org/10.1016/s1067-2516(98)80063-x
        • Soin S.P.
        • Knight T.A.
        • Dinah A.F.
        • Mears S.C.
        • Swierstra B.A.
        • Belkoff S.M.
        Suture-button versus screw fixation in a syndesmosis rupture model: a biomechanical comparison.
        Foot Ankle Int. 2009; 30: 346-352https://doi.org/10.3113/FAI.2009.0346
        • Xie L.
        • Xie H.
        • Wang J.
        • Chen C.
        • Zhang C.
        • Chen H.
        • et al.
        Comparison of suture button fixation and syndesmotic screw fixation in the treatment of distal tibiofibular syndesmosis injury: a systematic review and meta-analysis.
        Int J Surg. 2018; 60: 120-131https://doi.org/10.1016/j.ijsu.2018.11.007
        • Lubberts B.
        • Vopat B.G.
        • Wolf J.C.
        • Longo U.G.
        • DiGiovanni C.W.
        • Guss D.
        Arthroscopically measured syndesmotic stability after screw vs. suture button fixation in a cadaveric model.
        Injury. 2017; 48: 2433-2437https://doi.org/10.1016/j.injury.2017.08.066
        • Lehtola R.
        • Leskelä H.V.
        • Flinkkilä T.
        • Pakarinen H.
        • Niinimäki J.
        • Savola O.
        • et al.
        Suture button versus syndesmosis screw fixation in pronation-external rotation ankle fractures: a minimum 6-year follow-up of a randomised controlled trial.
        Injury. 2021; 52: 3143-3149https://doi.org/10.1016/j.injury.2021.06.025
        • Kiskaddon E.M.
        • Wright A.
        • Meeks B.D.
        • Froehle A.W.
        • Gould G.C.
        • Lubitz M.G.
        • Prayson M.J.
        • Horne B.R.
        A biomechanical cadaver comparison of suture button fixation to plate fixation for pubic symphysis diastasis.
        Injury. 2018; 49: 1993-1998https://doi.org/10.1016/j.injury.2018.09.032
        • Inge S.Y.
        • Pull Ter Gunne A.F.
        • Aarts C.A.M.
        • Bemelman M.
        A systematic review on dynamic versus static distal tibiofibular fixation.
        Injury. 2016; 47: 2627-2634https://doi.org/10.1016/j.injury.2016.09.032
        • Lurie B.M.
        • Paez C.J.
        • Howitt S.R.
        • Pennock A.T.
        Suture-button versus screw fixation in adolescent syndesmotic injuries: functional outcomes and maintenance of reduction.
        J Pediatr Orthop. 2021; 41: 427-432https://doi.org/10.1097/BPO.0000000000001803
        • Naqvi G.A.
        • Cunningham P.
        • Lynch B.
        • Galvin R.
        • Awan N.
        Fixation of ankle syndesmotic injuries: comparison of tightrope fixation and syndesmotic screw fixation for accuracy of syndesmotic reduction.
        Am J Sports Med. 2012; 40: 2828-2835https://doi.org/10.1177/0363546512461480
        • Kortekangas T.
        • Savola O.
        • Flinkkilä T.
        • Lepojärvi S.
        • Nortunen S.
        • Ohtonen P.
        • et al.
        A prospective randomised study comparing TightRope and syndesmotic screw fixation for accuracy and maintenance of syndesmotic reduction assessed with bilateral computed tomography.
        Injury. 2015; 46: 1119-1126https://doi.org/10.1016/j.injury.2015.02.004
        • Kocadal O.
        • Yucel M.
        • Pepe M.
        • Aksahin E.
        • Aktekin C.N.
        Evaluation of reduction accuracy of suture-button and screw fixation techniques for syndesmotic injuries.
        Foot Ankle Int. 2016; 37: 1317-1325https://doi.org/10.1177/1071100716661221
        • Sanders D.
        • Schneider P.
        • Taylor M.
        • Tieszer C.
        • Lawendy A.R.
        • Canadian Orthopaedic Trauma Society
        Improved reduction of the tibiofibular syndesmosis with tightrope compared with screw fixation: results of a randomized controlled study.
        J Orthop Trauma. 2019; 33: 531-537https://doi.org/10.1097/BOT.0000000000001559
        • Dikos G.D.
        • Heisler J.
        • Choplin R.H.
        • Weber T.G.
        Normal tibiofibularrelationshipsat thesyndesmosisonaxial CTimaging.
        J Orthop Trauma. 2012; 26: 433-438
        • Sagi H.C.
        • Shah A.R.
        • Sanders R.W.
        The functional consequence of syndesmotic joint malreduction at a minimum 2-year follow-up.
        J Orthop Trauma. 2012; 26: 439-443https://doi.org/10.1097/BOT.0b013e31822a526a
        • Gardner M.J.
        • Demetrakopoulos D.
        • Briggs S.M.
        • Helfet D.L.
        • Lorich D.G.
        Malreduction of the tibiofibular syndesmosis in ankle fractures.
        Foot Ankle Int. 2006; 27: 788-792https://doi.org/10.1177/107110070602701005
        • Franke J.
        • von Recum J.
        • Suda A.J.
        • Grützner P.A.
        • Wendl K.
        Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries.
        J Bone Joint Surg Am. 2012; 94: 1386-1390https://doi.org/10.2106/JBJS.K.01122
        • Gifford P.B.
        • Lutz M.
        The Tibiofibular Line: an Anatomical Feature to Diagnose Syndesmosis Malposition.
        Foot Ankle Int. 2014; 35: 1181-1186https://doi.org/10.1177/1071100714546187
        • Hamilton Steven W.
        • Aboud Hussain
        Finite element analysis, mechanical assessment and material comparison of two volar slab constructs.
        Injury. 2009; 40: 397-399
        • Oh Y.
        • Wakabayashi Y.
        • Kurosa Y.
        • Fujita K.
        • Okawa A.
        Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: mechanical analysis by the CT-based finite element method.
        Injury. 2014; 45: 1764-1771https://doi.org/10.1016/j.injury.2014.08.037
        • Zheng L.
        • Shi H.
        • Feng Y.
        • Sun B.S.
        • Ding H.Y.
        • Zhang G.Y.
        Injury patterns of medial patellofemoral ligament and correlation analysis with articular cartilage lesions of the lateral femoral condyle after acute lateral patellar dislocation in children and adolescents: an MRI evaluation.
        Injury. 2015; 46: 1137-1144https://doi.org/10.1016/j.injury.2015.02.001
        • Jang C.Y.
        • Bang S.H.
        • Kim W.H.
        • Lee S.J.
        • Lee H.M.
        • Kwak D.K.
        • et al.
        Effect of fracture levels on the strength of bone-implant constructs in subtrochanteric fracture models fixed using short cephalomedullary nails: a finite element analysis.
        Injury. 2019; 50: 1883-1888https://doi.org/10.1016/j.injury.2019.08.014
        • Terzi M.
        • Güvercin Y.
        • Ateş S.M.
        • Sekban D.M.
        • Yaylacı M.
        Effect of different abutment materials on stress distrıbution in peripheral bone and dental implant system.
        Sigma J Eng Nat Sci. 2020; 38 (2020): 1495-1507
      1. Mimics Innovation Suite 24.0 (Materialise, Belgium, Leuven)

      2. 3-Matic 16.0 ((Materialise, Belgium, Leuven)

      3. ANSYS 16.0.
        Swanson Analysis Systems Inc., Houston PA, USA2016
        • Ramlee M.H.
        • Kadir M.R.
        • Murali M.R.
        • Kamarul T.
        Finite element analysis of three commonly used external fixation devices for treating type III pilon fractures.
        Med Eng Phys. 2014; 36: 1322-1330https://doi.org/10.1016/j.medengphy
        • Cheung J.T.
        • Zhang M.
        • Leung A.K.
        • Fan Y.B.
        Three-dimensional finite element analysis of the foot during standing a material sensitivity study.
        J Biomech. 2005; 38 (doi.org/): 1045-1054https://doi.org/10.1016/j.jbiomech
        • St Pierre R.K.
        • Rosen J.
        • Whitesides T.E.
        • Szczukowski M.
        • Fleming L.L.
        • Hutton W.C.
        The tensile strength of the anterior talofibular ligament.
        Foot Ankle. 1983; 4: 83-85https://doi.org/10.1177/107110078300400208
        • Attarian D.E.
        • McCrackin H.J.
        • DeVito D.P.
        • McElhaney J.H.
        • Garrett W.E.
        Biomechanical characteristics of human ankle ligaments.
        Foot Ankle. 1985; 6: 54-58https://doi.org/10.1177/107110078500600202
        • Siegler S.
        • Block J.
        • Schneck C.D.
        The mechanical characteristics of the collateral ligaments of the human ankle joint.
        Foot Ankle. 1988; 8: 234-242https://doi.org/10.1177/107110078800800502
        • Colville M.R.
        • Marder R.A.
        • Boyle J.J.
        • Zarins B.
        Strain measurement in lateral ankle ligaments.
        Am J Sports Med. 1990; 18: 196-200https://doi.org/10.1177/036354659001800214
        • Mansour J.M.
        Biomechanics of cartilage. Kinesiol. Mech. Pathomech.
        Hum. Mov. 2003; 2: 69-83
        • Tu Y.K.
        • Liu Y.Ç.
        • Yang W.J.
        • Chen L.W.
        • Hong Y.Y.
        • Chen Y.C.
        • et al.
        Temperature rise simulation during a kirschner pin drilling in bone.
        2009 3rd Int. Con on Bioinformatics and Biomedical Eng. 2009; : 1-4https://doi.org/10.1109/ICBBE.2009.5163563
        • Guan M.
        • Zhao J.
        • Kuang Y.
        • Li G.
        • Tan J.
        Finite element analysis of the effect of sagittal angle on ankle joint stability in posterior malleolus fracture: a cohort study.
        Int J Surg. 2019; 70: 53-59https://doi.org/10.1016/j.ijsu.2019.08.022
        • Nişanci G.N.
        • Güvercin Y.
        • Ateş S.M.
        • Ölmez H.
        • Yaylacı E.U.
        • Yaylacı M.
        Investigation of the effect of different prosthesis designs and numbers on stress, strain and deformation distribution.
        Int J Appl Sci Eng. 2020; 12 (doi.org/): 138-152https://doi.org/10.24107/ijeas.816227
        • Alastuey-López D.
        • Seral B.
        • Pérez M.Á.
        Biomechanical evaluation of syndesmotic fixation techniques via finite element analysis: screw vs. suture button.
        Comput Methods Programs Biomed. 2021; https://doi.org/10.1016/j.cmpb.2021.106272
        • Haraguchi N.
        • Armiger R.S.
        • Myerson M.S.
        • Campbell J.T.
        • Chao E.Y.
        Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling.
        Foot Ankle Int. 2009; 30: 177-185https://doi.org/10.3113/FAI-2009-0177
        • Liu Q.
        • Zhao G.
        • Yu B.
        • Ma J.
        • Li Z.
        • Zhang K.
        Effects of inferior tibiofibular syndesmosis injury and screw stabilization on motion of the ankle: a finite element study.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1228-1235https://doi.org/10.1007/s00167-014-3320-y
        • Rushing C.J.
        • Spinner S.M.
        • Armstrong A.V.
        • Hardigan P.
        Comparison of different magnitudes of applied syndesmotic clamp force: a cadaveric study.
        J Foot Ankle Surg. 2020; 59 (PMID: 32354500): 452-456https://doi.org/10.1053/j.jfas.2019.08.028
        • Miller T.L.
        • Skalak T.
        Evaluation and treatment recommendations for acute injuries to the ankle syndesmosis without associated fracture.
        Sports Med. 2014; 44: 179-188
        • Onggo J.R.
        • Nambiar M.
        • Phan K.
        • Hickey B.
        • Ambikaipalan A.
        • Hau R.
        • et al.
        Suture button versus syndesmosis screw constructs for acute ankle diastasis injuries: a meta-analysis and systematic review of randomised controlled trials.
        Foot Ankle Surg. 2020; 26: 54-60https://doi.org/10.1016/j.fas.2018.11.008
        • Warner S.J.
        • Fabricant P.D.
        • Garner M.R.
        • Schottel P.C.
        • Helfet D.L.
        • Lorich D.G.
        The measurement and clinical importance of syndesmotic reduction after operative fixation of rotational ankle fractures.
        J Bone Joint Surg Am. 2015; 97: 1935-1944https://doi.org/10.2106/JBJS.O.00016
        • Forsythe K.
        • Freedman K.B.
        • Stover M.D.
        • Patwardhan A.G.
        Comparison of a novel FiberWire-Button construct versus metallic screw fixation in a syndesmotic injury model.
        Foot Ankle Int. 2008; 29 (doi.org/): 49-54https://doi.org/10.3113/FAI.2008.0049
        • Clanton T.O.
        • Whitlow S.R.
        • Williams B.T.
        • Liechti D.J.
        • Backus J.D.
        • Dornan G.J.
        • et al.
        Biomechanical comparison of 3 current ankle syndesmosis repair techniques.
        Foot Ankle Int. 2017; 38: 200-207https://doi.org/10.1177/1071100716666278
        • Cottom J.M.
        • Hyer C.F.
        • Philbin T.M.
        • Berlet G.C.
        Transosseous fixation of the distal tibiofibular syndesmosis: comparison of an interosseous suture and endobutton to traditional screw fixation in 50 cases.
        J Foot Ankle Surg. 2009; 48: 620-630https://doi.org/10.1053/j.jfas.2009.07.013
        • Nault M.L.
        • Gascon L.
        • Hébert-Davies J.
        • Leduc S.
        • Laflamme G.Y.
        • Kramer D.
        Modification of distal tibiofibular relationship after a mild syndesmotic injury.
        Foot Ankle Spec. 2017; 10: 133-138https://doi.org/10.1177/1938640016668235
        • Laflamme M.
        • Belzile E.L.
        • Bédard L.
        • van den Bekerom M.P.
        • Glazebrook M.
        • Pelet S.
        A prospective randomized multicenter trial comparing clinical outcomes of patients treated surgically with a static or dynamic implant for acute ankle syndesmosis rupture.
        J Orthop Trauma. 2015; 29: 216-223https://doi.org/10.1097/BOT.0000000000000245
        • Xu Y.
        • Kang R.
        • Li M.
        • Li Z.
        • Ma T.
        • Ren C.
        • et al.
        The clinical efficacy of suture-button fixation and trans-syndesmotic screw fixation in the treatment of ankle fracture combined with distal tibiofibular syndesmosis injury: a retrospective study.
        J Foot Ankle Surg. 2021; 16: 263-265https://doi.org/10.1053/j.jfas.2021.07.009
        • Burns W.C.
        • Prakash K.
        • Adelaar R.
        • Beaudoin A.
        • Krause W.
        Tibiotalar joint dynamics: indications for the syndesmotic screw—a cadaver study.
        Foot Ankle. 1993; (doi.org/)https://doi.org/10.1177/107110079301400308