Highlights
- •The proposed approach used a Vision Transformer (ViT) for femur fractures classification for the first time.
- •Attention maps and clustering showed the reliability of this architecture.
- •An evaluation carried out by clinicians with and without the help of our method showed the utility of this tool.
Abstract
Introduction
Materials and methods
Results
Conclusions
Keywords
Abbreviations:
AO (arbeitsgemeinschaft für osteosynthesefragen), OTA (orthopaedic trauma association), CNN (convolutional neural network), ViT (vision transformer)Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to InjuryReferences
- Burden of major musculoskeletal conditions.Bull World Health Organ. 2003; 81: 646-656
- Osteoporosis: a still increasing prevalence.Bone. 2006; 38 (FebSuppl 1): S4-S9
- Hip fracture.BMJ. 2006; 333 (Jul 1): 27-30
Journal of Orthopaedic Trauma. Femur. 2018 Jan;32:S33–44.
- Radiographic detection of hip and pelvic fractures in the emergency department.Am J Roentgenol. 2010; 194 (Apr 1): 1054-1060
- Hierarchical fracture classification of proximal femur X-Ray images using a multistage deep learning approach.Eur J Radiol. 2020; 133 (Dec)109373
- Deep learning.Nature. 2015; 521 (May): 436-444
- Intraoperative surgery room management: a deep learning perspective.Int J Med Robot Comput Assist Surg. 2020; 16: e2136
- EndoNet: a deep architecture for recognition tasks on laparoscopic videos.IEEE Trans Med Imaging. 2017; 36: 86-97
Tanzi L., Piazzolla P., Porpiglia F., Vezzetti E. Real-time deep learning semantic segmentation during intra-operative surgery for 3D augmented reality assistance. Int J CARS [Internet]. 2021 Jun 24 [cited 2021 Jun 25]; Available from: doi: 10.1007/s11548-021-02432-y.
- Deep CNN for 3D face recognition.(editors)in: Rizzi C. Andrisano A.O. Leali F. Gherardini F. Pini F. Vergnano A. Design tools and methods in industrial engineering. Springer International Publishing, Cham2020: 665-674
- ImageNet classification with deep convolutional neural networks.Commun ACM. 2017; 60 (May 24): 84-90
- Attention is all you need.in: Proceedings of the 31st international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA2017: 6000-6010 (NIPS’17)
- BERT: pre-training of deep bidirectional transformers for language understanding.in: Proceedings of the conference of the North American chapter of the association for computational linguistics: human language technologies. 2019: 4171-4186 (Volume 1 (Long and Short Papers) [Internet]. Minneapolis, Minnesota: Association for Computational LinguisticsAvailable from)
Radford A., Narasimhan K., Salimans T., Sutskever I. Improving language understanding by generative pre-training. 2018;
- End-to-end object detection with transformers.(editors)in: Vedaldi A. Bischof H. Brox T. Frahm J.M. Computer vision – ECCV 2020. Springer International Publishing, Cham2020: 213-229 (Lecture Notes in Computer Science)
- Cross-modal self-attention network for referring image segmentation.in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA2019: 10494-10503 ([Internet]Available from)
- Video action transformer network.in: Proceedings of the IEEE Computer Society. 2019: 244-253 ([cited 2021 Jun 25]Available from)
Zhang H., Goodfellow I., Metaxas D., Odena A. Self-attention generative adversarial networks. arXiv:180508318 [cs, stat] [Internet]. 2019 Jun 14 [cited 2021 Jun 25]; Available from: http://arxiv.org/abs/1805.08318
- X-Ray bone fracture classification using deep learning: a baseline for designing a reliable approach.Appl Sci. 2020; 10 (Feb 22): 1507
- Fracture detection in x-ray images through stacked random forests feature fusion.in: Proceedings of the IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE, Brooklyn, NY, USA2015: 801-805 ([Internet][cited 2019 Nov 25]Available from)
- Analysis on detecting of leg bone fracture from X-ray images.IJSRP. 2018; 8 ([Internet]Sep 12 [cited 2019 Nov 25]Available from)
- Deep neural network improves fracture detection by clinicians.Proc Natl Acad Sci USA. 2018; 115 (Nov 6): 11591-11596
- Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—Are they on par with humans for diagnosing fractures?.Acta Orthopaedica. 2017; 88 (Nov 2): 581-586
Rajpurkar P., Irvin J., Bagul A., Ding D., Duan T., Mehta H., et al. MURA: large dataset for abnormality detection in musculoskeletal radiographs. arXiv:171206957 [physics] [Internet]. 2018 May 22 [cited 2019 Nov 25]; Available from: http://arxiv.org/abs/1712.06957
- Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.Acta Orthopaedica. 2018; 89 (Jul 4): 468-473
Jiménez-Sánchez A., Kazi A., Albarqouni S., Kirchhoff C., Biberthaler P., Navab N., et al. Towards an interactive and interpretable CAD system to support proximal femur fracture classification. arXiv:190201338 [cs] [Internet]. 2019 Feb 4 [cited 2019 Nov 25]; Available from: http://arxiv.org/abs/1902.01338
- Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network.Sci Rep. 2020; 10 (Aug 13): 13694
- Automatic classification of proximal femur fractures based on attention models.(eds)in: Wang Q. Shi Y. Suk H.I. Suzuki K. Machine learning in medical imaging. Springer International Publishing, Cham2017: 70-78 (Lecture Notes in Computer Science)
- An image is worth 16x16 words: transformers for image recognition at scale.in: Proceedings of the international conference on learning representations. 2021 ([Internet] Available from)
Redmon J., Farhadi A.. YOLOv3: an incremental improvement. arXiv:180402767 [cs] [Internet]. 2018 Apr 8 [cited 2021 Mar 23]; Available from: http://arxiv.org/abs/1804.02767
- STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration.BMJ Open. 2016; 6 (Nov)e012799
Hassani A., Walton S., Shah N., Abuduweili A., Li J., Shi H. Escaping the big data paradigm with compact transformers. arXiv:210405704 [cs] [Internet]. 2021 Aug 13 [cited 2021 Oct 19]; Available from: http://arxiv.org/abs/2104.05704
Chollet F., Others. Keras [Internet]. 2015. Available from: https://keras.io
Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., et al. TensorFlow: large-scale machine learning on heterogeneous systems [Internet]. 2015. Available from: http://tensorflow.org/
Oliphant T. NumPy: a guide to NumPy [Internet]. 2006. Available from: http://www.numpy.org/
- Hip fractures among the elderly: causes, consequences and control.Ageing Res Rev. 2003; 2 (Jan): 57-93
- NHSLA litigation in hip fractures: lessons learnt from NHSLA data.Injury. 2017; 48 (Aug): 1853-1857
- Errors in fracture diagnoses in the emergency department – characteristics of patients and diurnal variation.BMC Emerg Med. 2006; 6 (Dec): 4
- Diagnostic errors in an accident and emergency department.Emerg Med J. 2001; 18 (Jul): 263-269
- Computer-aided diagnosis in medical imaging: historical review, current status and future potential.Comput Med Imaging Graph. 2007; 31 (Jun 1): 198-211
Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., et al. Generative adversarial networks. arXiv:14062661 [cs, stat] [Internet]. 2014 Jun 10 [cited 2019 Nov 25]; Available from: http://arxiv.org/abs/1406.2661
Frid-Adar M., Klang E., Amitai M., Goldberger J., Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. arXiv:180102385 [cs] [Internet]. 2018 Jan 8 [cited 2021 Jul 19]; Available from: http://arxiv.org/abs/1801.02385