Advertisement

Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models

Published:February 05, 2022DOI:https://doi.org/10.1016/j.injury.2022.02.008

      Abstract

      Background

      Eye injuries comprise 10–13% of civilian improvised explosive device (IED) injuries. The bomb blast wave induces a normal and shear forces on the tissues, causing a large acute IOP elevation. This study calculated the biomechanical stresses and strains in the eye due to IED explosion via eye-specific fluid-structure interaction (FSI) models.

      Methods

      Blast occurred at 2, 3, and 4 m from the front and side of the victim and the weights of the IED were 1 and 2 kg. The ground was covered with the deformable soil to mimic the realistic IED explosion condition and reflect the blast wave.

      Results

      The IOP elevation of ∼6,000–48,000 mmHg was observed in the eyes while the highest IOP was occurred with the IED weight and distance of 2 kg and 2 m (front) and the lowest was occurred with the IED weight and distance of 1 kg and 4 m (side). Our findings suggest the importance of the victim location and orientation concerning the blast wave when it comes to ocular injury assessment. IOP elevation of ∼2900 and ∼2700 mmHg were observed in ∼1.6 ms after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in front and side blasts, respectively, in consistence with the literature. Nonetheless, IOPs were considerably higher after ∼1.6 ms due to the merging of the bomb blast wave and its reflection off the ground.

      Conclusions

      The stresses and strains were highest for the frontal blast. Both side and frontal blasts caused higher stresses and strains at the rectus muscle insertions where the sclera is thinnest and prone to rupture. Blast angle has no considerable role in the resultant IOP. Front blast with a heavier IED resulted a higher stresses and deformations in the eye connective tissues compared to the side blast.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolf S.J.
        • Bebarta V.S.
        • Bonnett C.J.
        • Pons P.T.
        • Cantrill S.V.
        Blast injuries.
        Lancet North Am Ed. 2009; 374: 405-415
        • Mayo A.
        • Kluger Y.
        Terrorist bombing.
        World J Emerg Surg. 2006; 1: 1-6
        • Mader T.H.
        • Carroll R.D.
        • Slade C.S.
        • George R.K.
        • Ritchey J.P.
        • Neville S.P.
        Ocular war injuries of the Iraqi insurgency, January–September 2004.
        Ophthalmology. 2006; 113: 97-104
        • Arnold J.L.
        • Tsai M.-.C.
        • Halpern P.
        • Smithline H.
        • Stok E.
        • Ersoy G.
        Mass-casualty, terrorist bombings: epidemiological outcomes, resource utilization, and time course of emergency needs (Part I).
        Prehosp Disaster Med. 2003; 18: 220-234
        • Peleg K.
        • Aharonson-Daniel L.
        • Stein M.
        • Michaelson M.
        • Kluger Y.
        • Simon D.
        • et al.
        Gunshot and explosion injuries: characteristics, outcomes, and implications for care of terror-related injuries in Israel.
        Ann Surg. 2004; 239: 311
        • Lehman C.
        Mechanisms of injury in wartime.
        Rehabil Nurs. 2008; 33: 192-205
        • La Piana F.G.
        • Hornblass A.
        Military ophthalmology in the Vietnam War.
        Doc Ophthalmol. 1997; 93: 29-48
        • Mader T.H.
        • Aragones J.V.
        • Chandler A.C.
        • Hazlehurst J.A.
        • Heier J.
        • Kingham J.D.
        • et al.
        Ocular and ocular adnexal injuries treated by United States military ophthalmologists during Operations Desert Shield and Desert Storm.
        Ophthalmology. 1993; 100: 1462-1467
        • Gataa I.S.
        • Muassa Q.H.
        Patterns of maxillofacial injuries caused by terrorist attacks in Iraq: retrospective study.
        Int J Oral Maxillofac Surg. 2011; 40: 65-70
        • Ayyildiz O.
        • Hakan Durukan A.
        Comparison of endoscopic-assisted and temporary keratoprosthesis-assisted vitrectomy in combat ocular trauma: experience at a tertiary eye center in Turkey.
        J Int Med Res. 2018; 46: 2708-2716
        • Eze U.A.
        • Umar M.M.
        • Olaniyi O.B.
        • Akang U.J.
        • Achi I.B.
        Ocular injuries caused by improvised explosion devices-case series of patients seen in National Eye Centre, Kaduna Nigeria.
        Nigerian J Med. 2019; 28: 215-217
        • Shedd D.F.
        Ocular injury following primary blast exposure.
        The University of Utah, 2017
        • Bricker-Anthony C.
        • Hines-Beard J.
        • D'Surney L.
        • Rex T.S.
        Exacerbation of blast-induced ocular trauma by an immune response.
        J Neuroinflammation. 2014; 11: 192
        • Choi J.H.
        • Greene W.A.
        • Johnson A.J.
        • Chavko M.
        • Cleland J.M.
        • McCarron R.M.
        • et al.
        Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure.
        Clin Exp Ophthalmol. 2015; 43: 239-246
        • Abbotts R.
        • Harrison S.
        • Cooper G.
        Primary blast injuries to the eye: a review of the evidence.
        BMJ Military Health. 2007; 153: 119-123
        • Ritenour A.E.
        • Baskin T.W.
        Primary blast injury: update on diagnosis and treatment.
        Crit Care Med. 2008; 36: S311-S3S7
        • Chalioulias K.
        • Sim K.
        • Scott R.
        Retinal sequelae of primary ocular blast injuries.
        BMJ Military Health. 2007; 153: 124-125
        • Clemente C.
        • Esposito L.
        • Speranza D.
        • Bonora N.
        Firecracker eye exposure: experimental study and simulation.
        Biomech Model Mechanobiol. 2017; 16: 1401-1411
        • Sundaramurthy A.
        • Alai A.
        • Ganpule S.
        • Holmberg A.
        • Plougonven E.
        • Chandra N.
        Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.
        J Neurotrauma. 2012; 29: 2352-2364
        • Hines-Beard J.
        • Marchetta J.
        • Gordon S.
        • Chaum E.
        • Geisert E.E.
        • Rex T.S.
        A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage.
        Exp Eye Res. 2012; 99: 63-70
        • Weaver A.A.
        • Kennedy E.A.
        • Duma S.M.
        • Stitzel J.D.
        Evaluation of different projectiles in matched experimental eye impact simulations.
        J Biomech Eng. 2011; 133
        • Thomas C.N.
        • Courtie E.
        • Bernardo-Colón A.
        • Essex G.
        • Rex T.S.
        • Ahmed Z.
        • Blanch R.J.
        Assessment of necroptosis in the retina in a repeated primary ocular blast injury mouse model.
        Exp Eye Res. 2020; 108102
        • Karimi A.
        • Razaghi R.
        • Navidbakhsh M.
        • Sera T.
        • Kudo S.
        Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.
        Injury. 2016; 47: 1042-1050
        • Karimi A.
        • Razaghi R.
        • Biglari H.
        • Sera T.
        • Kudo S.
        Collision of the glass shards with the eye: A computational fluid-structure interaction model.
        J Chem Neuroanat. 2018; 90: 80-86
        • Razaghi R.
        • Biglari H.
        • Karimi A.
        Finite element modeling of the eyeglass-related traumatic ocular injuries due to high explosive detonation.
        Eng Failure Anal. 2020; 117104835
        • Tong J.
        • Gu L.
        The influence of primary blast wave on the posterior part of the eyeball.
        ASME 2018 International Mechanical Engineering Congress and Exposition. 2018;
        • Notghi B.
        • Bhardwaj R.
        • Bailoor S.
        • Thompson K.A.
        • Weaver A.A.
        • Stitzel J.D.
        • et al.
        Biomechanical evaluations of ocular injury risk for blast loading.
        J Biomech Eng. 2017; 139
        • Liu X.
        • Wang L.
        • Wang C.
        • Fan J.
        • Liu S.
        • Fan Y.
        Prediction of globe rupture caused by primary blast: a finite element analysis.
        Comput Methods Biomech Biomed Engin. 2015; 18: 1024-1029
        • Bhardwaj R.
        • Ziegler K.
        • Seo J.H.
        • Ramesh K.
        • Nguyen T.D.
        A computational model of blast loading on the human eye.
        Biomech Model Mechanobiol. 2014; 13: 123-140
        • Weaver A.A.
        • Stitzel S.M.
        • Stitzel J.D.
        Injury risk prediction from computational simulations of ocular blast loading.
        Biomech Model Mechanobiol. 2017; 16: 463-477
        • Forty G.
        US army handbook, 1939-1945.
        Barnes & Noble Books, 1998
        • Le Blanc G.
        • Adoum M.
        • Lapoujade V.
        External blast load on structures–Empirical approach.
        in: 5th European LS Dyna Users Conference. 2005 (France)
        • Rossi T.
        • Boccassini B.
        • Esposito L.
        • Iossa M.
        • Ruggiero A.
        • Tamburrelli C.
        • Bonora N.
        The pathogenesis of retinal damage in blunt eye trauma: finite element modeling.
        Invest Ophthalmol Vis Sci. 2011; 52: 3994-4002
        • Ayyalasomayajula A.
        • Park R.I.
        • Simon B.R.
        • Vande Geest J.P.
        A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics.
        Comput Methods Biomech Biomed Engin. 2016; 19: 591-602
        • Watson R.
        • Gray W.
        • Sponsel W.E.
        • Lund B.J.
        • Glickman R.D.
        • Groth S.L.
        • Reilly M.A.
        Simulations of porcine eye exposure to primary blast insult.
        Transl Vis Sci Technol. 2015; 4 (8-8)
        • Karimi A.
        • Razaghi R.
        • Rahmati S.M.
        • Sera T.
        • Kudo S.
        A nonlinear dynamic finite-element analyses of the basketball-related eye injuries.
        Sports Eng. 2018; : 1-7
        • Rossi T.
        • Boccassini B.
        • Esposito L.
        • Clemente C.
        • Iossa M.
        • Placentino L.
        • Bonora N.
        Primary blast injury to the eye and orbit: finite element modeling.
        Invest Ophthalmol Vis Sci. 2012; 53: 8057-8066
        • Bhardwaj R.
        • Ziegler K.
        • Seo J.H.
        • Ramesh K.T.
        • Nguyen T.D.
        A computational model of blast loading on the human eye.
        Biomech Model Mechanobiol. 2014; 13: 123-140
        • Sławiński G.
        • Malesa P.
        • Świerczewski M.
        Numerical analysis of the biomechanical factors of a soldier inside a vehicle with the pulse load resulting from a side explosion.
        in: The International Conference of the Polish Society of Biomechanics. Springer, 2018: 163-176
        • Karimi A.
        • Razaghi R.
        • Girkin C.A.
        • Downs J.C.
        Ocular biomechanics due to ground blast reinforcement.
        Comput Methods Programs Biomed. 2021; 211106425
        • Karimi A.
        • Rahmati S.M.
        • Razaghi R.
        • Girkin C.A.
        • Downs J.Crawford
        Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater.
        Comput Methods Programs Biomed. 2022; 215106618
        • Girkin C.A.
        • Fazio M.A.
        • Yang H.
        • Reynaud J.
        • Burgoyne C.F.
        • Smith B.
        • Wang L.
        • Downs J.C.
        Variation in the three-dimensional histomorphometry of the normal human optic nerve head with age and race: lamina cribrosa and peripapillary scleral thickness and position.
        Invest Ophthalmol Vis Sci. 2017; 58: 3759-3769
        • Stitzel J.D.
        • Duma S.M.
        • Cormier J.M.
        • Herring I.P.
        A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture.
        SAE Technical Paper. 2002;
        • Razaghi R.
        • Biglari H.
        • Karimi A.
        A comparative study on the mechanical performance of the protective headgear materials to minimize the injury to the boxers' head.
        Int J Ind Ergon. 2018; 66: 169-176
        • Karimi A.
        • Navidbakhsh M.
        • Razaghi R.
        Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge.
        Mater Sci Eng C. 2014; 42: 608-614
        • Karimi A.
        • Razaghi R.
        • Navidbakhsh M.
        • Sera T.
        • Kudo S.
        Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model.
        Sports Eng. 2015; : 1-11
        • Karimi A.
        • Grytz R.
        • Rahmati S.M.
        • Girkin C.A.
        • Downs J.C.
        Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole.
        Comput Methods Programs Biomed. 2021; 198105794
        • Karimi A.
        • Rahmati S.M.
        • Grytz R.G.
        • Girkin C.A.
        • Downs J.C.
        Modeling the biomechanics of the lamina cribrosa microstructure in the human eye.
        Acta Biomater. 2021; 134: 357-378
        • Abdolkarimzadeh F.
        • Ashory M.R.
        • Ghasemi-Ghalebahman A.
        • Karimi A.
        Inverse dynamic finite element-optimization modeling of the brain tumor mass-effect using a variable pressure boundary.
        Comput Methods Programs Biomed. 2021; 106476
        • Liu J.
        • Roberts C.J.
        Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis.
        J Cataract Refract Surg. 2005; 31: 146-155
        • Karimi A.
        • Razaghi R.
        • Sera T.
        • Kudo S.
        A combination of the finite element analysis and experimental indentation via the cornea.
        J Mech Behav Biomed Mater. 2019; 90: 146-154
        • Lewis B.
        Developing and implementing a road side safety soil model into ls-dyna.
        FHWA Research and Development Turner-Fairbank, 1999
        • Aharonson-Daniel L.
        • Klein Y.
        • Peleg K.
        Suicide bombers form a new injury profile.
        Ann Surg. 2006; 244: 1018
        • Weichel E.D.
        • Colyer M.H.
        • Ludlow S.E.
        • Bower K.S.
        • Eiseman A.S.
        Combat ocular trauma visual outcomes during operations iraqi and enduring freedom.
        Ophthalmology. 2008; 115: 2235-2245
        • Bajaire B.
        • Oudovitchenko E.
        • Morales E.
        Vitreoretinal surgery of the posterior segment for explosive trauma in terrorist warfare.
        Graefes Arch Clin Exp Ophthalmol. 2006; 244: 991-995
        • Colyer M.H.
        • Chun D.W.
        • Bower K.S.
        • Dick J.S.
        • Weichel E.D.
        Perforating globe injuries during operation Iraqi Freedom.
        Ophthalmology. 2008; 115 (e2): 2087-2093
        • Erdurman F.
        • Hurmeric V.
        • Gokce G.
        • Durukan A.
        • Sobaci G.
        • Altinsoy H.
        Ocular injuries from improvised explosive devices.
        Eye. 2011; 25: 1491-1498
        • Goh S.
        Bomb blast mass casualty incidents: initial triage and management of injuries.
        Singapore Med J. 2009; 50: 101-106
        • Robson J.
        • Behrman A.
        • Abbuhl S.
        Globe Rupture.
        eMedicine. 2005; (February 2007)
        • Thach A.B.
        • Johnson A.J.
        • Carroll R.B.
        • Huchun A.
        • Ainbinder D.J.
        • Stutzman R.D.
        • et al.
        Severe Eye Injuries in the War in Iraq, 2003-2005.
        Ophthalmology. 2008; 115: 377-382
        • Jones K.
        • Choi J.-.H.
        • Sponsel W.E.
        • Gray W.
        • Groth S.L.
        • Glickman R.D.
        • et al.
        Low-level primary blast causes acute ocular trauma in rabbits.
        J Neurotrauma. 2016; 33: 1194-1201
        • Bailoor S.
        • Bhardwaj R.
        • Nguyen T.D.
        Effectiveness of eye armor during blast loading.
        Biomech Model Mechanobiol. 2015; 14: 1227-1237
        • Singh A.K.
        • Ditkofsky N.G.
        • York C.J.D.
        • Abujudeh H.H.
        • Avery L.A.
        • Brunner J.F.
        • et al.
        Blast injuries: from improvised explosive device blasts to the Boston Marathon Bombing.
        Radiographics. 2016; 36: 295-307
        • Cernak I.
        Frontiers in neuroengineering blast injuries and blast-induced neurotrauma: overview of pathophysiology and experimental knowledge models and findings.
        in: Kobeissy F.H. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis © 2015 by Taylor & Francis Group, LLC., Boca Raton (FL)2015
        • Ben-Dor G.
        CHAPTER 8.1 - Oblique shock wave reflections.
        in: Ben-Dor G. Igra O. Elperin T.O.V. Handbook of shock waves. Academic Press, Burlington2001: 67-179
        • Chandra N.
        • Ganpule S.
        • Kleinschmit N.
        • Feng R.
        • Holmberg A.
        • Sundaramurthy A.
        • et al.
        Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling.
        Shock Waves. 2012; 22: 403-415
        • Tong J.
        • Kedar S.
        • Ghate D.
        • Gu L.
        Indirect traumatic optic neuropathy induced by primary blast: a fluid–structure interaction study.
        J Biomech Eng. 2019; 141
        • Alphonse V.D.
        • Kemper A.R.
        • Strom B.T.
        • Beeman S.M.
        • Duma S.M.
        Mechanisms of eye injuries from fireworks.
        JAMA. 2012; 308: 33-34
        • Alphonse V.D.
        Injury biomechanics of the human eye during blunt and blast loading.
        Virginia Tech, 2012
        • Voorhies K.D.
        Static and dynamic stress/strain properties for human and porcine eyes.
        Virginia Tech, 2003
        • Meek K.M.
        • Newton R.H.
        Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice.
        J Refract Surg. 1999; 15: 695-699
        • Esposito L.
        • Clemente C.
        • Bonora N.
        • Rossi T.
        Modelling human eye under blast loading.
        Comput Methods Biomech Biomed Engin. 2015; 18: 107-115
        • Vurgese S.
        • Panda-Jonas S.
        • Jonas J.B.
        Scleral thickness in human eyes.
        PLoS One. 2012; 7: e29692
        • Johnston M.
        • Noden D.
        • Hazelton R.
        • Coulombre J.
        • Coulombre A.
        Origins of avian ocular and periocular tissues.
        Exp Eye Res. 1979; 29: 27-43
        • Haugen O.H.
        • Kjeka O.
        Localized, extreme scleral thinning causing globe rupture during strabismus surgery.
        J AAPOS. 2005; 9: 595-596
        • Cherry P.M.H.
        Rupture of the globe.
        Arch Ophthalmol. 1972; 88: 498-507
        • Cruvinel Isaac D.L.
        • Ghanem V.C.
        • Nascimento M.A.
        • Torigoe M.
        • Kara-José N.
        Prognostic factors in open globe injuries.
        Ophthalmologica. 2003; 217: 431-435
        • Ling R.
        • Quinn A.G.
        Traumatic rupture of the medial rectus muscle.
        J AAPOS. 2001; 5: 327-328
        • Manual L.-D.K.U.s.
        I. volume, version 971.
        Livermore Software Technology Corporation, 2007: 7374
        • Chen K.
        • Rowley A.P.
        • Weiland J.D.
        • Humayun M.S.
        Elastic properties of human posterior eye.
        J Biomed Mater Res A. 2014; 102: 2001-2007
        • Cotter F.
        • La Piana F.G.
        Eye casualty reduction by eye armor.
        Military Med. 1991; 156: 126-128
        • Tredici T.J.
        Management of ophthalmic casualties in Southeast Asia.
        Military Med. 1968; 133: 355-362
        • Uchio E.
        • Ohno S.
        • Kudoh J.
        • Aoki K.
        • Kisielewicz L.T.
        Simulation model of an eyeball based on finite element analysis on a supercomputer.
        Br J Ophthalmol. 1999; 83: 1106-1111
        • Chen K.
        • Weiland J.D.
        Mechanical properties of orbital fat and its encapsulating connective tissue.
        J Biomech Eng. 2011; 133
        • Lee B.
        • Litt M.
        • Buchsbaum G.
        Rheology of the vitreous body. Part I: viscoelasticity of human vitreous.
        Biorheology. 1992; 29: 521-533
        • Dubec B.
        • Stonis P.
        Material model parameters identification of blast environment.
        Security & Future. 2018; 2: 142-145