Advertisement

Clinical research–When it matters

  • Mengxuan Yao
    Affiliations
    Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China

    Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, China

    Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei 050051, China
    Search for articles by this author
  • Haicheng Wang
    Affiliations
    Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China

    Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, China

    Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei 050051, China
    Search for articles by this author
  • Wei Chen
    Correspondence
    Corresponding author at: Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.
    Affiliations
    Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China

    NHC Key Laboratory of Intelligent Orthopeadic Equipment, Shijiazhuang, Hebei 050051, China
    Search for articles by this author
Published:February 01, 2022DOI:https://doi.org/10.1016/j.injury.2022.01.049

      Abstract

      Clinical research runs through the entire progress of the science and technology which has been currently and previously applied to the medical field. It has gradually developed into a standardized procedure and played an important role in understanding the etiology and characteristics of diseases. Clinical researchs assess the effectiveness and safety of new/improved diagnostic or therapeutic technologies, implants, instruments, or drug applications, to discover new data and improve potential deficiencies in previous medical knowledge.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haynes B.R.
        • Sackett D.L.
        • Guyatt G.H.
        • Tugwell P.
        Clinical Epidemiology: How to Do Clinical Practice Research.
        Lippincott Williams & Wilkins, Philadelphia, PA2006
        • Hulley S.B.
        • Cummings S.R.
        • Browner W.S.
        • Grady D.
        • Hearst N.
        • Newman T.B.
        Designing clinical research.
        Lippincott Williams & Wilkins, New York2001
        • Collier R
        Legumes, lemons and streptomycin: a short history of the clinical trial.
        CMAJ. 2009; 180: 23-24
        • Zhou P.
        • Yang X.L.
        • Wang X.G.
        • Hu B.
        • Zhang L.
        • Zhang W.
        • et al.
        A pneumonia outbreak associated with a new coronavirus of probable bat origin.
        Nature. 2020; 579: 270-273
        • Sommer I.E.
        • Bakker P.R.
        What can psychiatrists learn from SARS and MERS outbreaks?.
        Lancet Psychiatry. 2020; 7: 565-566
        • Cui J.
        • Yuan B.
        • Li Y.
        • Li Z.
        • Yuan Y.
        The clinical characters and prognosis of COVID-19 patients with multiple organ dysfunction.
        Medicine (Baltimore). 2021; 100: e27400
        • Umakanthan S.
        • Sahu P.
        • Ranade A.V.
        • Bukelo M.M.
        • Rao J.S.
        • Abrahao-Machado L.F.
        • et al.
        Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19).
        Postgrad Med J. 2020; 96: 753-758
        • Zhu Y.
        • Chen W.
        • Xin X.
        • Yin Y.
        • Hu J.
        • Lv H.
        • et al.
        Epidemiologic characteristics of traumatic fractures in elderly patients during the outbreak of coronavirus disease 2019 in China.
        Int Orthop. 2020; 44: 1565-1570
        • Lv H.
        • Zhang Q.
        • Yin Y.
        • Zhu Y.
        • Wang J.
        • Hou Z.
        • et al.
        Epidemiologic characteristics of traumatic fractures during the outbreak of coronavirus disease 2019 (COVID-19) in China–A retrospective & comparative multi-center study.
        Injury. 2020; 51: 1698-1704
        • Enchev Y.
        Neuronavigation–Geneology, reality, and prospects.
        Neurosurg Focus. 2009; 27: E11
        • Wang M.
        • Li D.
        • Shang X.
        • Wang J.
        A review of computer-assisted orthopaedic surgery systems. The international journal of medical robotics + computer assisted surgery.
        MRCAS. 2020; 16: 1-28
        • Ghisla S.
        • Napoli F.
        • Lehoczky G.
        • Delcogliano M.
        • Habib N.
        • Arigoni M.
        • et al.
        Posterior pelvic ring fractures–Intraoperative 3D-CT guided navigation for accurate positioning of sacro-iliac screws.
        Orthop Traumatol Surg Res. 2018; 104: 1063-1067
        • Ferrero E.
        • Mazda K.
        • Simon A.L.
        • Ilharreborde B.
        Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery.
        Eur Spine J. 2018; 27: 2165-2174
        • Ewurum C.H.
        • Guo Y.
        • Pagnha S.
        • Feng Z.
        • Luo X.
        Surgical navigation in orthopedics–Workflow and system review.
        Adv Exp Med Biol. 2018; 1093: 47-63
        • McClung M.R.
        • Grauer A.
        • Boonen S.
        • Bolognese M.A.
        • Brown J.P.
        • Diez-Perez A.
        • et al.
        Romosozumab in postmenopausal women with low bone mineral density.
        N Engl J Med. 2014; 370: 412-420
        • Fixen C.
        • Tunoa J.
        Romosozumab–A review of efficacy, safety, and cardiovascular risk.
        Curr Osteoporos Rep. 2021; 19: 15-22
        • Bandeira L.
        • Lewiecki E.M.
        • Bilezikian J.P.
        Romosozumab for the treatment of osteoporosis.
        Expert Opin Biol Ther. 2017; 17: 255-263
        • Cosman F.
        • Crittenden D.B.
        • Adachi J.D.
        • Binkley N.
        • Czerwinski E.
        • Ferrari S.
        • et al.
        Romosozumab treatment in postmenopausal women with osteoporosis.
        N Engl J Med. 2016; 375: 1532-1543
        • Markham A.
        Romosozumab–First global approval.
        Drugs. 2019; 79: 471-476
        • Langdahl B.L.
        • Libanati C.
        • Crittenden D.B.
        • Bolognese M.A.
        • Brown J.P.
        • Daizadeh N.S.
        • et al.
        Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy–A randomized, open-label, phase 3 trial.
        Lancet. 2017; 390: 1585-1594
        • Lau E.M.C.
        • Dinavahi R.
        • Woo Y.C.
        • Wu C.H.
        • Guan J.
        • Maddox J.
        • et al.
        Romosozumab or alendronate for fracture prevention in East Asian patients–A subanalysis of the phase III, randomized ARCH study.
        Osteoporos Int. 2020; 31: 677-685
        • Asadipooya K.
        • Weinstock A.
        Cardiovascular outcomes of romosozumab and protective role of alendronate.
        Arterioscler Thromb Vasc Biol. 2019; 39: 1343-1350
        • Young G.
        • Lensing A.W.A.
        • Monagle P.
        • Male C.
        • Thelen K.
        • Willmann S.
        • et al.
        Rivaroxaban for treatment of pediatric venous thromboembolism. An Einstein-Jr phase 3 dose-exposure-response evaluation.
        J Thromb Haemost. 2020; 18: 1672-1685
        • Male C.
        • Lensing A.W.A.
        • Palumbo J.S.
        • Kumar R.
        • Nurmeev I.
        • Hege K.
        • et al.
        Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children–A randomized, controlled, phase 3 trial.
        Lancet Haematol. 2020; 7 (e18–27)
        • Kim C.H.
        • Kim J.W.
        Plate versus sacroiliac screw fixation for treating posterior pelvic ring fracture–A Systematic review and meta-analysis.
        Injury. 2020; 51: 2259-2266
        • Berber O.
        • Amis A.A.
        • Day A.C.
        Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures.
        J Bone Joint Surg Br. 2011; 93: 237-244
        • Chen W.
        • Hou Z.
        • Su Y.
        • Smith W.R.
        • Liporace F.A.
        • Zhang Y.
        Treatment of posterior pelvic ring disruptions using a minimally invasive adjustable plate.
        Injury. 2013; 44: 975-980
        • Wu T.
        • Chen W.
        • Zhang Q.
        • Li X.
        • Lv H.Z.
        • Yang G.
        • et al.
        Therapeutic effects of minimally invasive adjustable and locking compression plate for unstable pelvic fractures via posterior approach.
        Int J Clin Exp Med. 2015; 8: 827-835
        • Wu T.
        • Chen W.
        • Zhang Q.
        • Zheng Z.L.
        • Lyu H.Z.
        • Cui Y.W.
        • et al.
        Biomechanical comparison of two kinds of internal fixation in a type C zone ii pelvic fracture model.
        Chin Med J (Engl). 2015; 128: 2312-2317
        • Wu T.
        • Chen W.
        • Li X.
        • Zhang Q.
        • Lv H.Z.
        • Zhang Y.Z.
        Biomechanical comparison of three types of internal fixation in a type C zone II pelvic fracture model.
        Int J Clin Exp Med. 2015; 8: 1853-1861
        • Zhang R.
        • Yin Y.
        • Li S.
        • Guo J.
        • Hou Z.
        • Zhang Y.
        Sacroiliac screw versus a minimally invasive adjustable plate for Zone II sacral fractures–A retrospective study.
        Injury. 2019; 50: 690-696
        • Buckley R.
        • Tough S.
        • McCormack R.
        • Pate G.
        • Leighton R.
        • Petrie D.
        • et al.
        Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures–A prospective, randomized, controlled multicenter trial.
        J Bone Joint Surg Am. 2002; 84: 1733-1744
        • Tennent T.D.
        • Calder P.R.
        • Salisbury R.D.
        • Allen P.W.
        • Eastwood D.M.
        The operative management of displaced intra-articular fractures of the calcaneum–A two-center study using a defined protocol.
        Injury. 2001; 32: 491-496
        • Carr J.B.
        Surgical treatment of intra-articular calcaneal fractures–A review of small incision approaches.
        J Orthop Trauma. 2005; 19: 109-117
        • Sanders R.
        • Fortin P.
        • DiPasquale T.
        • Walling A.
        Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification.
        Clin Orthop Relat Res. 1993; : 87-95
        • Wang Q.
        • Chen W.
        • Su Y.
        • Pan J.
        • Zhang Q.
        • Peng A.
        • et al.
        Minimally invasive treatment of calcaneal fracture by percutaneous leverage, anatomical plate, and compression bolts–The clinical evaluation of cohort of 156 patients.
        J Trauma. 2010; 69: 1515-1522
        • Wang H.
        • Yang Z.
        • Wu Z.
        • Chen W.
        • Zhang Q.
        • Li M.
        • et al.
        A biomechanical comparison of conventional versus an anatomic plate and compression bolts for fixation of intra-articular calcaneal fractures.
        J Huazhong Univ Sci Technol Med Sci. 2012; 32: 571-575
        • Zhang T.
        • Su Y.
        • Chen W.
        • Zhang Q.
        • Wu Z.
        • Zhang Y.
        Displaced intra-articular calcaneal fractures treated in a minimally invasive fashion: longitudinal approach versus sinus tarsi approach.
        J Bone Joint Surg Am. 2014; 96: 302-309
        • Chen W.
        • Li Z.
        • Su Y.
        • Hou Z.
        • Zhang Q.
        • Zhang Y.
        Garden type I fractures myth or reality? A prospective study comparing CT scans with X-ray findings in Garden type I femoral neck fractures.
        Bone. 2012; 51: 929-932
        • Wang Z.
        • Chen W.
        • Zhu Y.
        • Tian S.
        • Zhao K.
        • Guo J.
        • et al.
        Incidence and missed diagnosis risk of occult posterior malleolar fractures associated with the tibial shaft fractures–A systematic review.
        J Orthop Surg Res. 2021; 16: 355
        • Hou Z.
        • Zhang Q.
        • Zhang Y.
        • Li S.
        • Pan J.
        • Wu H.
        A occult and regular combination injury–The posterior malleolar fracture associated with spiral tibial shaft fracture.
        J Trauma. 2009; 66: 1385-1390
        • Purnell G.J.
        • Glass E.R.
        • Altman D.T.
        • Sciulli R.L.
        • Muffly M.T.
        • Altman G.T.
        Results of a computed tomography protocol evaluating distal third tibial shaft fractures to assess noncontiguous malleolar fractures.
        J Trauma. 2011; 71: 163-168
        • Warner S.J.
        • Schottel P.C.
        • Garner M.R.
        • Helfet D.L.
        • Lorich D.G.
        Ankle injuries in distal tibial spiral shaft fractures: results from an institutional change in imaging protocol.
        Arch Orthop Trauma Surg. 2014; 134: 1661-1666
        • Sobol G.L.
        • Shaath M.K.
        • Reilly M.C.
        • Adams M.R.
        • Sirkin M.S.
        The incidence of posterior malleolar involvement in distal spiral tibia fractures–Is it higher than we think?.
        J Orthop Trauma. 2018; 32: 543-547
        • Buckwalter J.A.
        • Einhorn T.A.
        • Marsh L.J.
        Rockwood and green's fractures in adults.
        Lippincott Williams & Wilkins, Philadelphia2001
        • Xiaoping C.
        • Jianping W.
        Surgery.
        People's Health Publishing House, Beijing2013
        • Yupei Z.
        • Xiaoping C.
        Surgery.
        People's Health Publishing House, Beijing2015