Advertisement

Application of the lambda plate on condylar fractures: Finite element evaluation of the fixation rigidity for different fracture patterns and plate placements

Published:January 20, 2022DOI:https://doi.org/10.1016/j.injury.2022.01.032

      Abstract

      Purpose: The treatment challenges of condylar fractures necessitated the production of several plate designs. Among the relatively new plate designs is the lambda plate, for which biomechanical and clinical data are lacking. The purpose of this study is to examine the rigidity of fixation achieved when the lambda plate is applied to different fractures of the condylar neck and base.
      Methods: Five fractures of the condylar area were designed on a virtual model of a healthy mandible obtained from a CT scan. The fractures were reduced using the lambda plate. For the same fractures, alternative placements of the plate were simulated. The generated models were analysed using the finite element analysis for a 500 N bite load. The displacement of the two condylar fragments along the fracture line was calculated as an indicator of the rigidity of the fixation.
      Results: The displacement along the fracture was less than 0.144 mm for the neck fractures and greater than 0.165 mm for the fractures of the condylar base. A more cranial placement of the plate for the neck fractures further reduced the displacement, while a more anterior placement of the plate for the base fractures resulted in displacements greater than 0.330 mm.
      Conclusion: According to our study, the lambda plate offers better rigidity when applied as cranially as possible for condylar neck fractures. The lambda plate did not provide adequate fixation for base fractures. A second plate at the sigmoid notch should be considered to achieve better stabilization along the fracture if the lambda plate is eventually used.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Moraissi E.A.
        • Ellis 3rd, E.
        Surgical treatment of adult mandibular condylar fractures provides better outcomes than closed treatment: a systematic review and meta-analysis.
        J Oral Maxillofac Surg. 2015; 73: 482-493https://doi.org/10.1016/j.joms.2014.09.027
        • Meyer C.
        • Kahn J.L.
        • Boutemi P.
        • Wilk A.
        Photoelastic analysis of bone deformation in the region of the mandibular condyle during mastication.
        J Craniomaxillofac Surg. 2002; 30: 160-169https://doi.org/10.1054/jcms.2002.0297
        • Ramos A.
        • Nyashin Y.
        • Mesnard M.
        Influences of geometrical and mechanical properties of bone tissues in mandible behaviour - experimental and numerical predictions.
        Comput Methods Biomech Biomed Eng. 2017; 20: 1004-1014https://doi.org/10.1080/10255842.2017.1322072
        • Liokatis P.T.G
        • Gerasimidis S.
        • Smolka W
        Finite element analysis of different titanium plates for internal fixation of fractures of the mandibular condylar neck.
        J Oral Maxillofac Surg. 2020; (in Print)https://doi.org/10.1016/j.joms.2020.09.038
        • Lechler C.
        • Probst F.
        • Cornelius C.P.
        • Smolka W.
        Open reduction and internal fixation of mandibular condylar base and neck fractures using strut plates.
        J Oral Maxillofac Surg. 2018; 76: 1494-1503https://doi.org/10.1016/j.joms.2018.01.020
        • Cortelazzi R.
        • Altacera M.
        • Turco M.
        • Antonicelli V.
        • De Benedittis M.
        Development and clinical evaluation of MatrixMANDIBLE subcondylar plates system (Synthes).
        Craniomaxillofac Trauma Reconstr. 2015; 8: 94-99https://doi.org/10.1055/s-0034-1395382
        • Meyer C.
        • Martin E.
        • Kahn J.L.
        • Zink S.
        Development and biomechanical testing of a new osteosynthesis plate (TCP) designed to stabilize mandibular condyle fractures.
        J Craniomaxillofac Surg. 2007; 35: 84-90https://doi.org/10.1016/j.jcms.2006.11.006
        • Smolka W.
        • Liokatis P.
        • Cornelius C.P.
        Evaluation of complications after open reduction and internal fixation of mandibular condylar base and neck fractures using trapezoidal plates.
        J Craniofac Surg. 2020; https://doi.org/10.1097/SCS.0000000000006486
        • Darwich M.A.
        • Albogha M.H.
        • Abdelmajeed A.
        • Darwich K.
        Assessment of the biomechanical performance of 5 plating techniques in fixation of mandibular subcondylar fracture using finite element analysis.
        J Oral Maxillofac Surg. 2016; 74 (794 e791-798)https://doi.org/10.1016/j.joms.2015.11.021
        • Smolka W.
        • Liokatis P.
        • Cornelius C.P.
        Open reduction and internal fixation of unilateral mandibular condylar base and neck fractures using a lambda plate: selection criteria for application.
        J Oral Maxillofac Surg. 2020; https://doi.org/10.1016/j.joms.2020.01.035
        • Liokatis P.
        • Tzortzinis G.
        • Gerasimidis S.
        • Smolka W.
        Finite element analysis of different titanium miniplates: evaluation of three-dimensional designs applied on condylar neck fractures.
        J Stomatol Oral Maxillofac Surg. 2021; https://doi.org/10.1016/j.jormas.2021.06.011
        • Albogha M.H.
        • Mori Y.
        • Takahashi I.
        Three-dimensional titanium miniplates for fixation of subcondylar mandibular fractures: comparison of five designs using patient-specific finite element analysis.
        J Craniomaxillofac Surg. 2018; 46: 391-397https://doi.org/10.1016/j.jcms.2017.12.020
        • Murakami K.
        • Yamamoto K.
        • Sugiura T.
        • Horita S.
        • Matsusue Y.
        • Kirita T.
        Computed tomography-based 3-dimensional finite element analyses of various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible of a patient.
        J Oral Maxillofac Surg. 2017; 75 (1239 e1231-1239 e1211)https://doi.org/10.1016/j.joms.2017.02.014
        • de Jesus G.P.
        • Vaz L.G.
        • Gabrielli M.F.
        • Passeri L.A.
        • VO T.
        • Noritomi P.Y.
        • Jurgens P.
        Finite element evaluation of three methods of stable fixation of condyle base fractures.
        Int J Oral Maxillofac Surg. 2014; 43: 1251-1256https://doi.org/10.1016/j.ijom.2014.07.011
        • Hao J.B.
        • Dong L.L.
        Research progress on finite element analysis of internal fixation for clavicular fracture.
        Zhongguo Gu Shang. 2020; 33: 588-592https://doi.org/10.12200/j.issn.1003-0034.2020.06.020
        • Jin B.
        • Hu Y.G.
        • Han L.
        Progress in finite element analysis of meniscus.
        Zhongguo Gu Shang. 2019; 32: 485-488https://doi.org/10.3969/j.issn.1003-0034.2019.05.019
        • Rajapakse C.S.
        • Chang G.
        Micro-finite element analysis of the proximal femur on the basis of high-resolution magnetic resonance images.
        Curr Osteoporos Rep. 2018; 16: 657-664https://doi.org/10.1007/s11914-018-0481-5
        • O'Mahony A.M.
        • Williams J.L.
        • Katz J.O.
        • Spencer P.
        Anisotropic elastic properties of cancellous bone from a human edentulous mandible.
        Clin Oral Implants Res. 2000; 11: 415-421https://doi.org/10.1034/j.1600-0501.2000.011005415.x
        • Viceconti M.
        • Olsen S.
        • Nolte L.P.
        • Burton K.
        Extracting clinically relevant data from finite element simulations.
        Clin Biomech. 2005; 20: 451-454https://doi.org/10.1016/j.clinbiomech.2005.01.010
        • Cong A.
        • Buijs J.O.
        • Dragomir-Daescu D.
        In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur.
        Med Eng Phys. 2011; 33: 164-173https://doi.org/10.1016/j.medengphy.2010.09.018
        • Misch C.E.
        • Qu Z.
        • Bidez M.W.
        Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement.
        J Oral Maxillofac Surg. 1999; 57 (discussion 706-708): 700-706https://doi.org/10.1016/s0278-2391(99)90437-8
        • Yang D.
        • Liu Z.
        Quantification of microstructural features and prediction of mechanical properties of a dual-phase Ti-6Al-4V alloy.
        Materials (Basel). 2016; : 9https://doi.org/10.3390/ma9080628
        • van der Bilt A.
        • Tekamp A.
        • van der Glas H.
        • Abbink J.
        Bite force and electromyograpy during maximum unilateral and bilateral clenching.
        Eur J Oral Sci. 2008; 116: 217-222https://doi.org/10.1111/j.1600-0722.2008.00531.x
        • Korioth T.W.
        • Hannam A.G.
        Effect of bilateral asymmetric tooth clenching on load distribution at the mandibular condyles.
        J Prosthet Dent. 1990; 64: 62-73https://doi.org/10.1016/0022-3913(90)90154-5
        • Erhardson S.
        • Sheikholeslam A.
        • Forsberg C.M.
        • Lockowandt P.
        Vertical forces developed by the jaw elevator muscles during unilateral maximal clenching and their distribution on teeth and condyles.
        Swed Dent J. 1993; 17: 23-34
        • Pruim G.J.
        • de Jongh H.J.
        • ten Bosch J.J.
        Forces acting on the mandible during bilateral static bite at different bite force levels.
        J Biomech. 1980; 13: 755-763https://doi.org/10.1016/0021-9290(80)90237-7
        • Korioth T.W.
        • Hannam A.G.
        Mandibular forces during simulated tooth clenching.
        J Orofac Pain. 1994; 8: 178-189
        • Perren S.M.
        Physical and biological aspects of fracture healing with special reference to internal fixation.
        Clin Orthop Relat Res. 1979; : 175-196
        • Meyer C.
        • Serhir L.
        • Boutemi P.
        Experimental evaluation of three osteosynthesis devices used for stabilizing condylar fractures of the mandible.
        J Craniomaxillofac Surg. 2006; 34: 173-181https://doi.org/10.1016/j.jcms.2005.09.005
        • Nalla R.K.
        • Kinney J.H.
        • Ritchie R.O.
        Mechanistic fracture criteria for the failure of human cortical bone.
        Nat Mater. 2003; 2: 164-168https://doi.org/10.1038/nmat832
        • Champy M.
        • Lodde J.P.
        Mandibular synthesis. Placement of the synthesis as a function of mandibular stress.
        Rev Stomatol Chir Maxillofac. 1976; 77: 971-976
        • Champy M.
        • Lodde J.P.
        • Jaeger J.H.
        • Wilk A.
        Biomechanical basis of mandibular osteosynthesis according to the F.X. Michelet method.
        Rev Stomatol Chir Maxillofac. 1976; 77: 248-251
        • Kuppers K.
        Analysis of the functional structure of the human jaw.
        Ergeb Anat Entwicklungsgesch. 1971; 44: 3-90
        • Motsch A.
        Does the human mandible possess a trajectory structure?.
        Dtsch Zahnarztl Z. 1968; 23: 1381-1387
        • Tate G.S.
        • Ellis E.
        • 3rd Throckmorton G
        Bite forces in patients treated for mandibular angle fractures: implications for fixation recommendations.
        J Oral Maxillofac Surg. 1994; 52: 734-736https://doi.org/10.1016/0278-2391(94)90489-8
        • Liokatis P.
        • Tzortzinis G.
        • Gerasimidis S.
        • Smolka W.
        Finite element analysis of different titanium plates for internal fixation of fractures of the mandibular condylar neck.
        J Oral Maxillofac Surg. 2021; 79 (665 e661-665 e610)https://doi.org/10.1016/j.joms.2020.09.038
        • Foster A.L.
        • Moriarty T.F.
        • Zalavras C.
        • Morgenstern M.
        • Jaiprakash A.
        • Crawford R.
        • Burch M.A.
        • Boot W.
        • Tetsworth K.
        • Miclau T.
        • Ochsner P.
        • Schuetz M.A.
        • Richards R.G.
        • Metsemakers W.J.
        The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren.
        Injury. 2021; 52: 43-52https://doi.org/10.1016/j.injury.2020.06.044
        • Roe S.
        Biomechanics of fracture fixation.
        Vet Clin North Am Small Anim Pract. 2020; 50: 1-15https://doi.org/10.1016/j.cvsm.2019.08.009