Adapting non-medical applications for medical use: Ethical limits, coverage, and validation

Published:December 07, 2021DOI:


      • Adapting non-medical applications, such as messaging apps, social media, videoconference platforms, and non-medical devices for medical use, present potential limitations, barriers, and risks, which should be fully recognized to reduce crossing the fine line between ethical and unethical.
      • Most non-medical applications are not adequate tools to share clinical information due to their non-compliance with the European General Data Protection Regulation (GDPR) and the United States Health Insurance Portability and accountability act (HIPAA) rules.
      • Outside Europe and the United States, non-medical applications have been widely used in medical practice, following the policies of federal medical councils or associations in each country or region.
      • Regardless of the absence of a universally accepted recommendation, several authors have demonstrated the benefits of using non-medical instant messaging, communication tools, and devices with intended medical purposes in medical practice.
      • It must be assumed that no non-medical application is 100% secure, so its use must always balance risks and benefits to minimize potential ethical concerns.


      The widespread adoption of smartphones and other mobile devices amongst healthcare providers opened new possibilities arising from the use of non-medical apps, social media, meeting platforms, and non-medical devices with intended medical purposes, thus expanding the communication and imaging chat systems between these professionals and their patients, as well as amongst healthcare professionals. However, adapting non-medical applications, social media, videoconference platforms and devices for medical use present potential limitations, barriers, and risks, which should be fully recognized to reduce crossing the fine line between ethical and unethical. In the herein study, we analyse the ethical limits, coverage, and validation of non-medical applications adapted for medical use.
      Level of evidence: IV (evidence from well-designed case-control or cohort studies).

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Giordano V.
        • Koch H.
        • Godoy-Santos A.
        • Belangero W.D.
        • Pires R.E.S.
        • Labronici P.
        WhatsApp Messenger as an adjunctive tool for telemedicine: an overview.
        Interact J Med Res. 2017; 6: e11
        • Raza A.
        • Mukherjee S.
        • Patel V.
        • Kamal N.
        • Lichtarowicz-Krynska E.
        Smartphone use in virtual student teaching and virtual ward rounds during and after the COVID-19 pandemic?.
        BMJ Innov. 2021; (Epub ahead of printSept 15)
        • Nascimento I.J.B.D.
        • Oliveira J.A.Q.
        • Wolff I.S.
        • Ribeiro L.D.
        • Silva M.V.R.S.E.
        • Cardoso C.S.
        • et al.
        Use of smartphone-based instant messaging services in medical practice: a cross-sectional study.
        Sao Paulo Med J. 2020; 138: 86-92
        • Wong S.J.
        • Robertson G.A.
        • Connor K.L.
        • Brady R.R.
        • Wood A.M.
        Smartphone apps for orthopaedic sports medicine - a smart move?.
        BMC Sports Sci Med Rehabil. 2015; 7 (Erratum in: BMC Sports Sci Med Rehabil 2015;7:28): 23
        • Reinecke F.
        • Dittrich F.
        • Dudda M.
        • Stang A.
        • Polan C.
        • Müller R
        • et al.
        Acceptance, barriers, and future preferences of mobile health among patients receiving trauma and orthopedic surgical care: paper-based survey in a prospective multicenter study.
        JMIR Mhealth Uhealth. 2021; 9: e23784
        • Brody C.
        • Star A.
        • Tran J.
        Chat-based hotlines for health promotion: a systematic review.
        Mhealth. 2020; 6: 36
        • Giansanti D.
        • Cosentino L.
        WhatsApp in mHealth: design and evaluation of an mHealth tool to share dynamic images in hemodynamics.
        Mhealth. 2021; 7: 9
        • Giordano V.
        • Koch H.A.
        • Mendes C.H.
        • Bergamin A.
        • de Souza F.S.
        • do Amaral N.P.
        WhatsApp Messenger is useful and reproducible in the assessment of tibial plateau fractures: inter- and intra-observer agreement study.
        Int J Med Inform. 2015; 84: 141-148
        • Guerra-Bretaña R.M.
        • Flórez-Rendón A.L.
        Impact of regulations on innovation in the field of medical devices.
        Res Biomed Eng. 2018; 34: 356-367
        • Rothstein M.A.
        • Wilbanks J.T.
        • Beskow L.M.
        • Brelsford K.M.
        • Brothers K.B.
        • Doerr M.
        • et al.
        Unregulated health research using mobile devices: ethical considerations and policy recommendations.
        J Law Med Ethics. 2020; 48: 196-226
        • Masoni M.
        • Guelfi M.R.
        WhatsApp and other messaging apps in medicine: opportunities and risks.
        Intern Emerg Med. 2020; 15: 171-173
        • Carr C.
        • Hayes R.
        Social media: defining, developing, and divining.
        Atl J Commun. 2015; 23: 46-65
        • Kaplan A.M.
        • Haenlein M.
        Users of the world, united! The challenges and opportunities of social media.
        Bus Horiz. 2010; 53: 59-68
        • Taylor J.
        • Pagliari C.
        Comprehensive scoping review of health research using social media data.
        BMJ Open. 2018; 8e022931
      1. Faculty of Science. Social media and public health research. 2012 https://bjerglund. files. wordpress. com/ 2012/ 11/ final- social- media and-public- health- research1.Pdf.

        • Dol J.
        • Tutelman P.R.
        • Chambers C.T.
        • Barwick M.
        • Drake E.K.
        • Parker J.A.
        • et al.
        Health researchers' use of social media: scoping review.
        J Med Internet Res. 2019; 21: e13687
        • Thaler A.D.
        • Zelnio K.A.
        • Freitag A.
        • MacPherson R.
        • Shiffman D.
        • Bik H.
        • et al.
        Digital environmentalism: tools and strategies for the evolving online ecosystem. SAGE reference-environmental leadership: a reference handbook.
        SAGE Publications, London2012
        • Parsons E.C.M.
        • Shiffman D.S.
        • Darling E.S.
        • Spillman N.
        • Wright A.J.
        How Twitter literacy can benefit conservation scientists.
        Conserv Biol. 2013; 28: 299-301
        • Collins K.
        • Shiffman D.
        • Rock J.
        How are scientists using social media in the workplace?.
        PLoS ONE. 2016; 11e0162680
        • Fauville G.
        • Dupont S.
        • von Thun S.
        • Lundin J.
        Can Facebook be used to increase scientific literacy? A case study of the Monterey Bay Aquarium Research Institute Facebook page and ocean literacy.
        Comp editor. 2015; 82: 60-73
        • Weller K.
        • DroÈge E.
        • Puschmann C
        Citation analysis in Twitter: approaches for defining and measuring information flows within tweets during scientific conferences.
        in: Proceedings of Making Sense of Microposts Workshop. Co-located with Extended Semantic Web Conference, Crete, Greece2011: 1-12
        • Priem J.
        • Costello K.L.
        How and why scholars cite on Twitter.
        Proc Am Soc Info Sci Tech. 2010; 47: 1-4
        • Kamel Boulos M.
        • Giustini D.
        • Wheeler S
        Instagram and WhatsApp in health and healthcare: an overview.
        Future Internet. 2016; 8: 37
        • Gauthier T.P.
        • Spence E.
        Instagram and clinical infectious diseases.
        Clin Infect Dis. 2015; 61: 135-136
        • Wong X.L.
        • Liu R.C.
        • Sebaratnam D.F.
        Evolving role of Instagram in #medicine.
        Intern Med J. 2019; 49: 1329-1332
        • Dol J.
        • Tutelman P.R.
        • Chambers C.T.
        • Barwick M.
        • Drake E.K.
        • Parker J.A.
        • et al.
        Health researchers’ use of social medial: scoping review.
        J Med Internet Res. 2019; 21: e13687
        • Whitaker C.
        • Stevelink S.
        • Fear N.
        The use of Facebook in recruiting participants for health research purposes: a systematic review.
        J Med Internet Res. 2017; 19: e290
        • Rivera S.C.
        • Kyte D.G.
        • Aiyegbusi O.L.
        • Keeley T.J.
        • Calvert M.J.
        Assessing the impact of healthcare research: a systematic review of methodological frameworks.
        PLoS Med. 2017; 14e1002370
        • Scarlat M.M.
        • Mavrogenis A.F.
        • Pećina M.
        • Niculescu M.
        Impact and alternative metrics for medical publishing: our experience with international orthopaedics.
        Int Orthop. 2015; 39: 1459-1464
        • Gruzd A.
        • Staves K.
        • Wilk A.
        Tenure and promotion in the age of online social media.
        Proc Am Soc Info Sci Tech. 2012; 48: 1-9
        • webometrics Thelwall M.A history of
        Bul Am Soc Info Sci Tech. 2012; 38: 18-23
      2. Priem J., Taraborelli D., Groth P., Neylon C. Altmetrics: a Manifesto, 26 October 2010. [last accessed 2020-05-25].

        • Brigham T.J.
        An introduction to altmetrics.
        Med Ref Serv Q. 2014; 33: 438-447
        • Hammack C.M.
        Ethical use of social media data: beyond the clinical context.
        Hastings Center Rep. 2019; 49: 40-42
        • Gould D.J.
        • Nazarian S.
        Commentary on: plastic surgery-related hashtag utilization on Instagram: implications for education and marketing.
        Aesthet Surg J. 2017; 38: 339-340
        • Siegmund L.A.
        Social media: the next research frontier.
        Clin Nurse Spec. 2018; 32: 62-66
        • Rajanala S.
        • Maymone M.B.C.
        • Vashi N.A.
        Selfies-living in the era of filtered photographs.
        JAMA Facial Plast Surg. 2018; 20: 443-444
        • Loucks T.L.
        • Tyson C.
        • Dorr D.
        • Garovic V.D.
        • Hill J.
        • McSwain S.D.
        • et al.
        Clinical research during the COVID-19 pandemic: the role of virtual visits and digital approaches.
        J Clin Transl Sci. 2021; 5: e102
        • Mattiello S.
        • Aily J.
        • Conte da Silva A.
        • Silva Ribeiro G.
        • Noronha M.
        Interrater and intrarater reliability of performance based-tests using videoconferencing: a pilot study.
        Osteoarthritis Cartilage. 2021; 29: S32
        • Victorson D.
        • Hanson B.
        • Kirwen N.
        • Shevrin D.
        Integrative Medicine & Health Symposium Abstracts, Poster Abstracts, P05.11: a 4-week video-conference delivered mindfulness-based pilot RCT in advanced prostate cancer: feasibility, acceptability, & proof of concept.
        Glob Adv Health Med. 2021; 10 (2021): 20
        • Carter S.M.
        • Shih P.
        • Williams J.
        • Degeling C.
        • Mooney-Somers J.
        Conducting qualitative research online: challenges and solutions.
        Patient. 2021; (Jun 11doi:10.1007/s40271-021-00528-w. Epub ahead of print): 1-8
        • Mahoney M.C.
        • Ashare R.
        • Schlienz N.
        • Duerr C.
        • Hawk L.W.
        Making lemonade from SARS coronavirus-2 lemons: transitioning a smoking cessation trial to a virtual platform.
        J Subst Abuse Treat. 2020; 117108100
        • Ernst M.
        • Richards R.G.
        • Windolf M.
        Smart implants in fracture care - only buzzword or real opportunity?.
        Injury. 2021; 52 (Suppl): S101-S105
        • Lin M.C.
        • Hu D.
        • Marmor M.
        • Herfat S.T.
        • Bahney C.S.
        • Maharbiz M
        Smart bone plates can monitor fracture healing.
        Sci Rep. 2019; 9: 2122
        • Verhey J.T.
        • Haglin J.M.
        • Verhey E.M.
        • Hartigan D.E.
        Virtual, augmented, and mixed reality applications in orthopedic surgery.
        Int J Med Robot. 2020; 16: e2067
        • Vermue H.
        • Lambrechts J.
        • Tampere T.
        • Arnout N.
        • Auvinet E.
        • Victor J.
        How should we evaluate robotics in the operating theatre?.
        Bone Joint J. 2020; 102-B: 407-413
        • Bai L.
        • Yang J.
        • Chen X.
        • Sun Y.
        • Li X.
        Medical robotics in bone fracture reduction surgery: a review.
        Sensors (Basel). 2019; 19: 3593
        • Dagnino G.
        • Georgilas I.
        • Morad S.
        • Gibbons P.
        • Tarassoli P.
        • Atkins R.
        • et al.
        Image-guided surgical robotic system for percutaneous reduction of joint fractures.
        Ann Biomed Eng. 2017; 45: 2648-2662