Biomechanical performance of short and long cephalomedullary nail constructs for stabilizing different levels of subtrochanteric fracture

Published:December 07, 2021DOI:https://doi.org/10.1016/j.injury.2021.11.064

      Abstract

      Introduction

      The aim of this study was to assess biomechanical performance of short and long Cephalomedullary nail constructs consisting of different number of distal screw for stabilizing different levels of subtrochanteric fracture.

      Materials and methods

      The femur obtained from computed tomography scanner was used to create a transverse fracture at 15 mm (level A), 35 mm (level B), and 55 mm (level C) below the lesser trochanter. Short and long Cephalomedullary nails were virtually inserted to the fractured femur. Four-node tetrahedral element was used to build up finite element (FE) models for biomechanical analysis. The analysis focused on post-operative stage of partial weight-bearing.

      Results

      Stress on the implant localized at the surface between lag screw/nail and distal screw/nail. Short Cephalomedullary nail exhibited higher stress than long Cephalomedullary nail. The stress in short Cephalomedullary nail could be reduced by using two distal screws fixation and the fracture at level A produced less stress than that of level B and C. Either short or long nail with two distal screws is sufficient to withstand the stress magnitude produced from the physiologic load. When single dynamic distal screw was used, stress on implant, elastic strain at fracture gap, and bone stress reached the high values. Elastic strain of the fracture gap at level C were less than that of level A and B, but no statistically significant difference. There was no proximal cancellous bone damage observed from the FE analysis.

      Conclusions

      Long Cephalomedullary nail with at least two distal locking screws remains a proper implant for subtrochanteric fracture fixation in overall locations. However, short Cephalomedullary nail with two distal screws may be a candidate for a high subtrochanteric fracture. Single dynamic screw insertion is strongly not recommended with either short or long nail regarding implant failure.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Seinsheimer F.
        Subtrochanteric fractures of the femur.
        J Bone Joint Surg Am. 1978; 60: 300-306
        • Joglekar S.B.
        • Lindvall E.M.
        • Martirosian A.
        Contemporary management of subtrochanteric fractures.
        Orthop Clin North Am. 2015; 46: 21-35https://doi.org/10.1016/j.ocl.2014.09.001
        • Miedel R.
        • Törnkvist H.
        • Ponzer S.
        • Söderqvist A.
        • Tidermark J.
        Musculoskeletal function and quality of life in elderly patients after subtrochanteric femoral fracture treated with a cephalomedullary nail.
        J Orthop Trauma. 2011; 25: 208-213https://doi.org/10.1097/BOT.0b013e3181eaaf52
        • Borens O.
        • Wettstein M.
        • Kombot C.
        • Chevalley F.
        • Mouhsine E.
        • Garofalo R.
        Long gamma nail in the treatment of subtrochanteric fractures.
        Arch Orthop Trauma Surg. 2004; 124: 443-447https://doi.org/10.1007/s00402-004-0711-4
        • Raval P.
        • Ramasamy A.
        • Raza H.
        • Khan K.
        • Awan N.
        Comparison of short vs long anti-rotation in treating trochanteric fractures.
        Malays Orthop J. 2016; 10: 22-28https://doi.org/10.5704/MOJ.1603.005
        • Fantry A.J.
        • Elia G.
        • Vopat B.G.
        • Daniels A.H.
        Distal femoral complications following antegrade intramedullary nail placement.
        Orthop Rev. 2015; 7: 12-14https://doi.org/10.4081/or.2015.5820
        • Shetty A.
        • Shenoy P.M.
        • Swaminathan R.
        Mismatch of long gamma intramedullary nail with bow of the femur: does radius of curvature of the nail increase risk of distal femoral complications?.
        J Clin Orthop Trauma. 2019; 10: 302-304https://doi.org/10.1016/j.jcot.2017.12.006
        • Chen J.
        • Ma J.-.X.
        • Wang Y.
        • Bai H.-.H.
        • Sun L.
        • Wang Y.
        • Lu B.
        • Dong B.-.C.
        • Tian A.-.X.
        • Ma X.-.L.
        Finite element analysis of two cephalomedullary nails in treatment of elderly reverse obliquity intertrochanteric fractures: zimmer natural nail and proximal femoral nail antirotation-ΙΙ.
        J Orthop Surg Res. 2019; 14: 422https://doi.org/10.1186/s13018-019-1468-3
        • Blum L.E.
        • Yee M.A.
        • Mauffrey C.
        • Goulet J.A.
        • Perdue A.M.
        • Hake M.E.
        Comparison of reamed long and short intramedullary nail constructs in unstable intertrochanteric femur fractures: A biomechanical study.
        OTA Int. 2020; 3: e075https://doi.org/10.1097/OI9.0000000000000075
        • Kwak D-K
        • Kim W.-.H.
        • Lee S.-.J.
        • Rhyu S.-.H.
        • Jang C.-.Y.
        • Yoo J.-.H.
        Biomechanical comparison of three different intramedullary nails for fixation of unstable basicervical intertrochanteric fractures of the proximal femur: experimental studies.
        Biomed Res Int 2018. 2018; 7618079https://doi.org/10.1155/2018/7618079
        • Marmor M.
        • Elliott I.S.
        • Marshall S.T.
        • Yacoubian S.V.
        • Yacoubian S.V.
        • Herfat S.T.
        Biomechanical comparison of long, short, and extended-short nail construct for femoral intertrochanteric fractures.
        Injury. 2015; 46 (https://dx.doi.org/): 963-969https://doi.org/10.1016/j.injury.2015.03.005
        • Tucker S.M.
        • Wee H.
        • Fox E.
        • Reid J.S.
        • Lewis G.S.
        Parametric finite element analysis of intramedullary nail fixation of proximal femur fractures.
        J Orthop Res. 2019; 37 (https://dx.doi.org/): 2358-2366https://doi.org/10.1002/jor.24401
        • Eberle S.
        • Gerber C.
        • Von Oldenburg G.
        • Högel F.
        • Augat P.
        A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests.
        Proc Inst Mech Eng H. 2010; 224: 1141-1152https://doi.org/10.1243/09544119JEIM799
        • Fedorov A.
        • Beichel R.
        • Kalpathy-Cramer J.
        • et al.
        3D Slicer as an image computing platform for the quantitative imaging network.
        Magn Reson Imaging. 2012; 30: 1323-1341https://doi.org/10.1016/j.mri.2012.05.001
        • Chantarapanich N.
        • Sitthiseripratip K.
        • Mahaisavariya B.
        • Siribodhi P.
        Biomechanical performance of retrograde nail for supracondylar fractures stabilization.
        Med Biol Eng Comput. 2016; 54: 939-952https://doi.org/10.1007/s11517-016-1466-0
        • Jitprapaikulsarn S.
        • Chantarapanich N.
        • Gromprasit A.
        • Mahaisavariya C.
        • Patamamongkonchai C.
        Single lag screw and reverse distal femur locking compression plate for concurrent cervicotrochanteric and shaft fractures of the femur: biomechanical study validated with a clinical series.
        Eur J Orthop Surg Traumatol. 2021; 31: 1179-1192https://doi.org/10.1007/s00590-020-02868-z
        • Krone R.
        • Schuster P.
        An investigation on the importance of material anisotropy in finite-element modeling of the human femur.
        SAE Technical Papers. 2006; https://doi.org/10.4271/2006-01-0064
        • Taylor W.R.
        • Roland E.
        • Ploeg H.
        • Hertig D.
        • Klabunde R.
        • Warner M.D.
        • Hobatho M.C.
        • Rakotomanana L.
        • Clift S.E.
        Determination of orthotropic bone elastic constants using FEA and modal analysis.
        J Biomech. 2002; 35: 767-773https://doi.org/10.1016/S0021-9290(02)00022-2
        • Behrens B.-.A.
        • Nolte I.
        • Wefstaedt P.
        • Stukenborg-Colsman C.
        • Bouguecha A.
        Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions.
        Biomed Eng Online. 2009; 8: 7https://doi.org/10.1186/1475-925X-8-7
        • Heller M.O.
        • Bergmann G.
        • Kassi J.-.P.
        • Claes L.
        • Haas N.P.
        • Duda G.N.
        Determination of muscle loading at the hip joint for use in pre-clinical testing.
        J Biomech. 2005; 38: 1155-1163https://doi.org/10.1016/j.jbiomech.2004.05.022
        • Koval K.J.
        • Sala D.A.
        • Kummer F.J.
        • Zuckerman J.D.
        Postoperative weight-bearing after a fracture of the femoral neck or an intertrochanteric fracture.
        J Bone Joint Surg Am. 1998; 80: 352-356https://doi.org/10.2106/00004623-199803000-00007
        • Speirs A.D.
        • Heller M.O.
        • Duda G.N.
        • Taylor W.R.
        Physiologically based boundary conditions in finite element modelling.
        J Biomech. 2007; 40: 2318-2323https://doi.org/10.1016/j.jbiomech.2006.10.038
        • Chantarapanich N.
        • Siripanya A.
        • Sucharitpwatskul S.
        • Wanchat S.
        Validation of finite element model used to analyze sheet metal punching process in automotive part manufacturing.
        IOP Conf Ser Mater Sci Eng. 2017; 201012017https://doi.org/10.1088/1757-899X/201/1/012017
        • Reina-Romo E.
        • Giráldez-Sánchez M.A.
        • Mora-Macías J.
        • Cano-Luis P.
        • Domínguez J.
        Biomechanical design of Less Invasive Stabilization System femoral plates: computational evaluation of the fracture environment.
        Proc Inst Mech Eng H. 2014; 228: 1043-1052https://doi.org/10.1177/0954411914554634
        • Xu H.
        • Ye D.
        • Mei L.
        A study of the back stress and the friction stress behaviors of Ti-6Al-4V alloy during low cycle fatigue at room temperature.
        Mater Sci Eng A. 2017; 700: 530-539https://doi.org/10.1016/j.msea.2017.06.051
        • Hosseini S.
        Fatigue of Ti-6Al-4V.
        in: Hudak R Penhaker M Majernik J Biomedical engineering - Technical Applications in medicine. IntechOpen, Zagreb2012: 75-92https://doi.org/10.5772/45753
        • Wagner L.
        • Bigoney J.K.
        Fatigue of titanium alloys.
        (eds)in: Leyens C Peters M Titanium and titanium alloys: fundamentals and applications. Wiley-VCH, Weinheim2003: 153-185https://doi.org/10.1002/3527602119.ch5
        • Cinque M.E.
        • Goodnough L.H.
        • Schultz B.J.
        • Fithian A.T.
        • DeBaun M.
        • Lucas J.F.
        • Gardner M.J.
        • Bishop J.A.
        Short versus long cephalomedullary nailing of intertrochanteric fractures: a meta-analysis of 3208 patients.
        Arch Orthop Trauma Surg. 2021; https://doi.org/10.1007/s00402-021-03752-z
        • Mavčič B.
        • Antolič V.
        Optimal mechanical environment of the healing bone fracture/osteotomy.
        Int Orthop. 2012; 36: 689-695https://doi.org/10.1007/s00264-012-1487-8
        • Qian L.
        • Todo M.
        • Matsushita Y.
        • Koyano K.
        Finite element analysis of bone resorption around dental implant.
        J Biomech Sci Eng. 2009; 4: 365-376https://doi.org/10.1299/jbse.4.365
        • Mirzaali M.J.
        • Schwiedrzik J.J.
        • Thaiwichai S.
        • Best J.P.
        • Michler J.
        • Zysset P.K.
        • Wolfram U.
        Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly.
        Bone. 2016; 93: 196-211https://doi.org/10.1016/j.bone.2015.11.018