Wound Closure Following Intervention for Closed Orthopedic Trauma

Published:November 27, 2021DOI:https://doi.org/10.1016/j.injury.2021.11.062

      Highlights

      • There are both patient and surgical factors that may predispose individuals to wound healing issues.
      • Wounds that are in direct communication with bony fractures are at risk due to local tissue trauma, hematoma formation, and injured vasculature.
      • There is no evidence of a difference in surgical site infection following closure with sutures or staples in orthopedic trauma surgery.
      • Incisional negative pressure wound therapy cannot be recommended for routine use.
      • We as surgeons can affect patient outcomes based on decisions we make at the time of wound closure.

      Abstract

      The method of skin closure and post-operative wound management has always been important in orthopedic surgery and plays an even larger role now that surgical site infection (SSI) is a national healthcare metric for both surgeons and hospitals. Wound related issues remain some of the most feared complications following orthopedic trauma procedures and are associated with significant morbidity. In order to minimize the risk of surgical site complications, surgeons must be familiar with the physiology of wound healing as well as the patient and surgical factors affecting healing potential. The goal of all skin closure techniques is to promote rapid healing with acceptable cosmesis, all while minimizing risk of infection and dehiscence. Knowledge of the types of closure material, techniques of wound closure, surgical dressings, negative pressure wound therapy, and other local modalities is important to optimize wound healing. There is no consensus in the literature as to which closure method is superior but the available data can be used to make informed choices. Although often left to less experienced members of the surgical team, the process of wound closure and dressing the wound should not be an afterthought, and instead must be part of the surgical plan. Wounds that are in direct communication with bony fractures are particularly at risk due to local tissue trauma, resultant swelling, hematoma formation, and injured vasculature.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson P.A.
        • Savage J.W.
        • Vaccaro A.R.
        • Radcliff K.
        • Arnold P.M.
        • Lawrence B.D.
        • et al.
        Prevention of surgical site infection in spine surgery.
        Neurosurgery. 2017; 80: S114-SS23
        • Krishnan R.
        • MacNeil S.D.
        • Malvankar-Mehta M.S.
        Comparing sutures versus staples for skin closure after orthopaedic surgery: systematic review and meta-analysis.
        BMJ Open. 2016; 6e009257
        • Whitehouse J.D.
        • Friedman N.D.
        • Kirkland K.B.
        • Richardson W.J.
        • Sexton D.J.
        The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost.
        Infect Control Hosp Epidemiol. 2002; 23: 183-189
        • Shepard J.
        • Ward W.
        • Milstone A.
        • Carlson T.
        • Frederick J.
        • Hadhazy E.
        • et al.
        Financial impact of surgical site infections on hospitals: the hospital management perspective.
        JAMA Surg. 2013; 148: 907-914
        • Rosenbaum A.J.
        • Banerjee S.
        • Rezak K.M.
        • Uhl R.L.
        Advances in Wound Management.
        J Am Acad Orthop Surg. 2018; 26: 833-843
        • Pierpont Y.N.
        • Dinh T.P.
        • Salas R.E.
        • Johnson E.L.
        • Wright T.G.
        • Robson M.C.
        • et al.
        Obesity and surgical wound healing: a current review.
        ISRN Obes. 2014; 2014638936
        • Broughton G.
        • Janis J.E.
        • Attinger C.E.
        Wound healing: an overview.
        Plast Reconstr Surg. 2006; 117 (2nd) (1e-S-32e-S)
        • He Z.
        • King G.L.
        Microvascular complications of diabetes.
        Endocrinol Metab Clin North Am. 2004; 33 (xi-xii): 215-238
        • Chow L.W.
        • Loo W.T.
        • Yuen K.Y.
        • Cheng C.
        The study of cytokine dynamics at the operation site after mastectomy.
        Wound Repair Regen. 2003; 11: 326-330
        • Richards J.E.
        • Kauffmann R.M.
        • Zuckerman S.L.
        • Obremskey W.T.
        • May A.K.
        Relationship of hyperglycemia and surgical-site infection in orthopaedic surgery.
        J Bone Joint Surg Am. 2012; 94: 1181-1186
        • Martin E.T.
        • Kaye K.S.
        • Knott C.
        • Nguyen H.
        • Santarossa M.
        • Evans R.
        • et al.
        Diabetes and risk of surgical site infection: a systematic review and meta-analysis.
        Infect Control Hosp Epidemiol. 2016; 37: 88-99
        • Haddix K.P.
        • Clement R.C.
        • 3rd Tennant JN
        • Ostrum R.F
        Complications following operatively treated ankle fractures in insulin- and non-insulin-dependent diabetic patients.
        Foot Ankle Spec. 2018; 11: 206-216
        • Wild T.
        • Rahbarnia A.
        • Kellner M.
        • Sobotka L.
        • Eberlein T.
        Basics in nutrition and wound healing.
        Nutrition. 2010; 26: 862-866
        • Stechmiller J.K.
        Understanding the role of nutrition and wound healing.
        Nutr Clin Pract. 2010; 25: 61-68
        • Kong L.
        • Liu Z.
        • Meng F.
        • Shen Y.
        Smoking and risk of surgical site infection after spinal surgery: a systematic review and meta-analysis.
        Surg Infect (Larchmt). 2017; 18: 206-214
        • Fisichella L.
        • Fenga D.
        • Rosa M.A.
        Surgical site infection in orthopaedic surgery: correlation between age, diabetes, smoke and surgical risk.
        Folia Med (Plovdiv). 2014; 56: 259-263
        • Goldminz D.
        • Bennett R.G.
        Cigarette smoking and flap and full-thickness graft necrosis.
        Arch Dermatol. 1991; 127: 1012-1015
        • Petratos P.B.
        • Felsen D.
        • Trierweiler G.
        • Pratt B.
        • McPherson J.M.
        • Poppas D.P.
        Transforming growth factor-beta2 (TGF-beta2) reverses the inhibitory effects of fibrin sealant on cutaneous wound repair in the pig.
        Wound Repair Regen. 2002; 10: 252-258
        • Wang Q.
        • Dickson G.R.
        • Abram W.P.
        • Carr K.E.
        Electron irradiation slows down wound repair in rat skin: a morphological investigation.
        Br J Dermatol. 1994; 130: 551-560
        • Haubner F.
        • Ohmann E.
        • Pohl F.
        • Strutz J.
        • Gassner H.G.
        Wound healing after radiation therapy: review of the literature.
        Radiat Oncol. 2012; 7: 162
        • D'Alessandro S.
        • Magnavacca A.
        • Perego F.
        • Fumagalli M.
        • Sangiovanni E.
        • Prato M.
        • et al.
        Effect of hypoxia on gene expression in cell populations involved in wound healing.
        Biomed Res Int. 2019; 20192626374
        • Metzger Z.
        • Nitzan D.
        • Pitaru S.
        • Brosh T.
        • Teicher S.
        The effect of bacterial endotoxin on the early tensile strength of healing surgical wounds.
        J Endod. 2002; 28: 30-33
        • Robson M.C.
        Wound infection. A failure of wound healing caused by an imbalance of bacteria.
        Surg Clin North Am. 1997; 77: 637-650
        • Simman R.
        • Alani H.
        • Williams F.
        Effect of mitomycin C on keloid fibroblasts: an in vitro study.
        Ann Plast Surg. 2003; 50: 71-76
        • Bachoura A.
        • Guitton T.G.
        • Smith R.M.
        • Vrahas M.S.
        • Zurakowski D.
        • Ring D.
        Infirmity and injury complexity are risk factors for surgical-site infection after operative fracture care.
        Clin Orthop Relat Res. 2011; 469: 2621-2630
        • Blam O.G.
        • Vaccaro A.R.
        • Vanichkachorn J.S.
        • Albert T.J.
        • Hilibrand A.S.
        • Minnich J.M.
        • et al.
        Risk factors for surgical site infection in the patient with spinal injury.
        Spine (Phila Pa 1976). 2003; 28: 1475-1480
        • Herruzo-Cabrera R.
        • Lopez-Gimenez R.
        • Diez-Sebastian J.
        • Lopez-Acinero M.J.
        • Banegas-Banegas J.R.
        Surgical site infection of 7301 traumatologic inpatients (divided in two sub-cohorts, study and validation): modifiable determinants and potential benefit.
        Eur J Epidemiol. 2004; 19: 163-169
        • Thu L.T.
        • Dibley M.J.
        • Ewald B.
        • Tien N.P.
        • Lam L.D.
        Incidence of surgical site infections and accompanying risk factors in Vietnamese orthopaedic patients.
        J Hosp Infect. 2005; 60: 360-367
      1. Chiu T.W. Stone's Plastic Surgery Facts and Figures. 3 ed 2011.

        • Peersman G.
        • Laskin R.
        • Davis J.
        • Peterson M.G.
        • Richart T.
        Prolonged operative time correlates with increased infection rate after total knee arthroplasty.
        HSS J. 2006; 2: 70-72
        • Cheng H.
        • Chen B.P.
        • Soleas I.M.
        • Ferko N.C.
        • Cameron C.G.
        • Hinoul P.
        Prolonged operative duration increases risk of surgical site infections: a systematic review.
        Surg Infect (Larchmt). 2017; 18: 722-735
        • Hochberg J.
        • Meyer K.M.
        • Marion M.D.
        Suture choice and other methods of skin closure.
        Surg Clin North Am. 2009; 89: 627-641
        • Masini B.D.
        • Stinner D.J.
        • Waterman S.M.
        • Wenke J.C.
        Bacterial adherence to suture materials.
        J Surg Educ. 2011; 68: 101-104
        • Gayton J.C.
        • Sensiba P.
        • Imbrogno B.F.
        • Venkatarayappa I.
        • Tsatalis J.
        • Prayson M.J.
        The effects of magnetic resonance imaging on surgical staples: an experimental analysis.
        J Trauma. 2011; 70: 1279-1281
        • Sagi H.C.
        • Papp S.
        • Dipasquale T.
        The effect of suture pattern and tension on cutaneous blood flow as assessed by laser Doppler flowmetry in a pig model.
        J Orthop Trauma. 2008; 22: 171-175
        • Shannon S.F.
        • Houdek M.T.
        • Wyles C.C.
        • Yuan B.J.
        • Cross W.W.
        • 3rd Cass JR
        • et al.
        Allgower-donati versus vertical mattress suture technique impact on perfusion in ankle fracture surgery: a randomized clinical trial using intraoperative angiography.
        J Orthop Trauma. 2017; 31: 97-102
        • Park Y.H.
        • Chang A.S.
        • Choi G.W.
        • Kim H.J.
        A comparison of three methods of skin closure following repair of Achilles tendon rupture.
        Injury. 2018; 49: 1942-1946
        • Mudd C.D.
        • Boudreau J.A.
        • Moed B.R.
        A prospective randomized comparison of two skin closure techniques in acetabular fracture surgery.
        J Orthop Traumatol. 2014; 15: 189-194
        • Lehtonen E.
        • Patel H.
        • Phillips S.
        • Correia Pinto M.
        • Naranje S.
        • Shah A
        Staple versus suture closure for ankle fracture fixation: retrospective chart review for safety and outcomes.
        Foot (Edinb). 2018; 37: 71-76
        • Daniilidis K.
        • Stukenborg-Colsman C.
        • Ettinger S.
        • Claassen L.
        • Plaass C.
        • Lerch M.
        • et al.
        Nylon sutures versus skin staples in foot and ankle surgery: is there a clinical difference?.
        Musculoskelet Surg. 2020; 104: 163-169
        • Park Y.H.
        • Song J.H.
        • Choi G.W.
        • Kim H.J.
        Comparison of 2-octyl cyanoacrylate topical skin adhesive and simple interrupted nylon sutures for wound closure in ankle fracture surgery.
        Foot Ankle Int. 2018; 39: 1283-1289
        • Fleisher J.
        • Khalifeh A.
        • Pettker C.
        • Berghella V.
        • Dabbish N.
        • Mackeen A.D.
        Patient satisfaction and cosmetic outcome in a randomized study of cesarean skin closure.
        J Matern Fetal Neonatal Med. 2019; 32: 3830-3835
        • Gillanders S.L.
        • Anderson S.
        • Mellon L.
        • Heskin L.
        A systematic review and meta-analysis: do absorbable or non-absorbable suture materials differ in cosmetic outcomes in patients requiring primary closure of facial wounds?.
        J Plast Reconstr Aesthet Surg. 2018; 71: 1682-1692
        • Sklar L.R.
        • Pourang A.
        • Armstrong A.W.
        • Dhaliwal S.K.
        • Sivamani R.K.
        • Eisen D.B.
        Comparison of running cutaneous suture spacing during linear wound closures and the effect on wound cosmesis of the face and neck: a randomized clinical trial.
        JAMA Dermatol. 2019; 155: 321-326
        • Stoecker A.
        • Blattner C.M.
        • Howerter S.
        • Fancher W.
        • Young J.
        • Lear W.
        Effect of simple interrupted suture spacing on aesthetic and functional outcomes of skin closures.
        J Cutan Med Surg. 2019; 23: 580-585
        • Smith T.O.
        • Sexton D.
        • Mann C.
        • Donell S.
        Sutures versus staples for skin closure in orthopaedic surgery: meta-analysis.
        BMJ. 2010; 340: c1199
        • Shantz J.A.
        • Vernon J.
        • Leiter J.
        • Morshed S.
        • Stranges G.
        Sutures versus staples for wound closure in orthopaedic surgery: a randomized controlled trial.
        BMC Musculoskelet Disord. 2012; 13: 89
        • Krishnan R.J.
        • Crawford E.J.
        • Syed I.
        • Kim P.
        • Rampersaud Y.R.
        • Martin J.
        Is the risk of infection lower with sutures than with staples for skin closure after orthopaedic surgery? A meta-analysis of randomized trials.
        Clin Orthop Relat Res. 2019; 477: 922-937
        • Singh K.
        • Bauer J.M.
        • LaChaud G.Y.
        • Bible J.E.
        • Mir H.R.
        Surgical site infection in high-energy peri-articular tibia fractures with intra-wound vancomycin powder: a retrospective pilot study.
        J Orthop Traumatol. 2015; 16: 287-291
        • Fernicola S.D.
        • Elsenbeck M.J.
        • Grimm P.D.
        • Pisano A.J.
        • Wagner S.C.
        Intrasite antibiotic powder for the prevention of surgical site infection in extremity surgery: a systematic review.
        J Am Acad Orthop Surg. 2020; 28: 37-43
        • Qadir R.
        • Costales T.
        • Coale M.
        • Mulliken A.
        • Zerhusen T.
        • Joshi M.
        • et al.
        Vancomycin powder use in fractures at high risk of surgical site infection.
        J Orthop Trauma. 2020; (Jr)
        • O'Toole R.V.
        • Joshi M.
        • Carlini A.R.
        • Murray C.K.
        • Allen L.E.
        • Scharfstein D.O.
        • et al.
        Local antibiotic therapy to reduce infection after operative treatment of fractures at high risk of infection: a multicenter, randomized, controlled trial (VANCO Study).
        J Orthop Trauma. 2017; 31 (Suppl): S18-S24
        • Goldenheim P.D.
        In vitro efficacy of povidone-iodine solution and cream against methicillin-resistant Staphylococcus aureus.
        Postgrad Med J. 1993; 69 (Suppl): S62-S65
        • Chang F.Y.
        • Chang M.C.
        • Wang S.T.
        • Yu W.K.
        • Liu C.L.
        • Chen T.H.
        Can povidone-iodine solution be used safely in a spinal surgery?.
        Eur Spine J. 2006; 15: 1005-1014
        • Cheng M.T.
        • Chang M.C.
        • Wang S.T.
        • Yu W.K.
        • Liu C.L.
        • Chen T.H.
        Efficacy of dilute betadine solution irrigation in the prevention of postoperative infection of spinal surgery.
        Spine (Phila Pa 1976). 2005; 30: 1689-1693
        • Brown N.M.
        • Cipriano C.A.
        • Moric M.
        • Sporer S.M.
        • Della Valle C.J
        Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection.
        J Arthroplasty. 2012; 27: 27-30
        • Frisch N.B.
        • Kadri O.M.
        • Tenbrunsel T.
        • Abdul-Hak A.
        • Qatu M.
        • Davis J.J.
        Intraoperative chlorhexidine irrigation to prevent infection in total hip and knee arthroplasty.
        Arthroplast Today. 2017; 3: 294-297
        • Stinner D.J.
        • Waterman S.M.
        • Masini B.D.
        • Wenke J.C.
        Silver dressings augment the ability of negative pressure wound therapy to reduce bacteria in a contaminated open fracture model.
        J Trauma. 2011; 71: S147-S150
        • Grosso M.J.
        • Berg A.
        • LaRussa S.
        • Murtaugh T.
        • Trofa D.P.
        • Geller J.A.
        Silver-impregnated occlusive dressing reduces rates of acute periprosthetic joint infection after total joint arthroplasty.
        J Arthroplasty. 2017; 32: 929-932
        • Cai J.
        • Karam J.A.
        • Parvizi J.
        • Smith E.B.
        • Sharkey P.F.
        Aquacel surgical dressing reduces the rate of acute PJI following total joint arthroplasty: a case-control study.
        J Arthroplasty. 2014; 29: 1098-1100
        • Springer B.D.
        • Beaver W.B.
        • Griffin W.L.
        • Mason J.B.
        • Odum S.M.
        Role of surgical dressings in total joint arthroplasty: a randomized controlled trial.
        Am J Orthop (Belle Mead NJ). 2015; 44: 415-420
        • Kuo F.C.
        • Chen B.
        • Lee M.S.
        • Yen S.H.
        • Wang J.W.
        AQUACEL(R) Ag surgical dressing reduces surgical site infection and improves patient satisfaction in minimally invasive total knee arthroplasty: a prospective, randomized, controlled study.
        Biomed Res Int. 2017; 20171262108
        • Luque-Valenzuela M.
        • Sanchez-Aguilera A.J.
        • Martin-Vivaldi-Jimenez A.
        • Jodar-Graus R.
        • Prados-Olleta N
        Do surgical site complications after ankle fracture surgery reduce with Aquacel Extra Ag(R)?.
        Rev Esp Cir Ortop Traumatol. 2019; 63: 342-345
        • Argenta L.C.
        • Morykwas M.J.
        Vacuum-assisted closure: a new method for wound control and treatment: clinical experience.
        Ann Plast Surg. 1997; 38 (discussion 77): 563-576
        • Kilpadi D.V.
        • Cunningham M.R.
        Evaluation of closed incision management with negative pressure wound therapy (CIM): hematoma/seroma and involvement of the lymphatic system.
        Wound Repair Regen. 2011; 19: 588-596
        • Timmers M.S.
        • Le Cessie S.
        • Banwell P.
        • Jukema G.N
        The effects of varying degrees of pressure delivered by negative-pressure wound therapy on skin perfusion.
        Ann Plast Surg. 2005; 55: 665-671
        • Grauhan O.
        • Navasardyan A.
        • Hofmann M.
        • Muller P.
        • Stein J.
        • Hetzer R.
        Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy.
        J Thorac Cardiovasc Surg. 2013; 145: 1387-1392
        • Nam D.
        • Sershon R.A.
        • Levine B.R.
        • Della Valle C.J
        The use of closed incision negative-pressure wound therapy in orthopaedic surgery.
        J Am Acad Orthop Surg. 2018; 26: 295-302
        • Stannard J.P.
        • Gabriel A.
        • Lehner B.
        Use of negative pressure wound therapy over clean, closed surgical incisions.
        Int Wound J. 2012; 9 (Suppl 132-9)
        • Reddix R.N.
        • Leng X.I.
        • Woodall J.
        • Jackson B.
        • Dedmond B.
        • Webb L.X
        The effect of incisional negative pressure therapy on wound complications after acetabular fracture surgery.
        J Surg Orthop Adv. 2010; 19 (Jr): 91-97
        • Stannard J.P.
        • Robinson J.T.
        • Anderson E.R.
        • McGwin G.
        • Volgas D.A.
        • Alonso J.E
        Negative pressure wound therapy to treat hematomas and surgical incisions following high-energy trauma.
        J Trauma. 2006; 60 (Jr): 1301-1306
        • Karlakki S.
        • Brem M.
        • Giannini S.
        • Khanduja V.
        • Stannard J.
        • Martin R.
        Negative pressure wound therapy for managementof the surgical incision in orthopaedic surgery: a review of evidence and mechanisms for an emerging indication.
        Bone Joint Res. 2013; 2: 276-284
        • Pauser J.
        • Nordmeyer M.
        • Biber R.
        • Jantsch J.
        • Kopschina C.
        • Bail H.J.
        • et al.
        Incisional negative pressure wound therapy after hemiarthroplasty for femoral neck fractures - reduction of wound complications.
        Int Wound J. 2016; 13: 663-667
        • Costa M.L.
        • Achten J.
        • Bruce J.
        • Tutton E.
        • Petrou S.
        • Lamb S.E.
        • et al.
        Effect of Negative Pressure wound therapy vs standard wound management on 12-month disability among adults with severe open fracture of the lower limb: the WOLLF randomized clinical trial.
        JAMA. 2018; 319: 2280-2288
        • Costa M.L.
        • Achten J.
        • Knight R.
        • Bruce J.
        • Dutton S.J.
        • Madan J.
        • et al.
        Effect of incisional negative pressure wound therapy vs standard wound dressing on deep surgical site infection after surgery for lower limb fractures associated with major trauma: the WHIST randomized clinical trial.
        JAMA. 2020; 323: 519-526
        • Thomas G.
        • Whalley H.
        • Modi C.
        Early mobilization of operatively fixed ankle fractures: a systematic review.
        Foot Ankle Int. 2009; 30: 666-674
        • Dehghan N.
        • McKee M.D.
        • Jenkinson R.J.
        • Schemitsch E.H.
        • Stas V.
        • Nauth A.
        • et al.
        Early weightbearing and range of motion versus non-weightbearing and immobilization after open reduction and internal fixation of unstable ankle fractures: a randomized controlled trial.
        J Orthop Trauma. 2016; 30: 345-352