Advertisement

Adhesives for treatment of bone fractures: A review of the state-of-the art

      Abstract

      Treatment of fractures remains challenging and carries a high economical burden to both patients and society. In order to prevent some of the complications, the use of bone adhesives has been proposed, but up to date, bone adhesives are not part of the current clinical practice. Early results of use of bone cements and bone glues are promising, focusing in the areas of highly fragmented fractures, fixation of long bone fractures, filling bone voids and defects, promoting osseointegration, preventing non-union while maintaining the reduction of fracture fixation. This review aims to describe the state-of-the-art of the development, properties and use of adhesives in fracture treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jennison T.
        • Brinsden M.
        Fracture admission trends in England over a ten-year period.
        Ann R Coll Surg Engl. 2019; 101: 208-214
        • Busse J.W.
        • Bhandari M.
        • Sprague S.
        • Johnson-Masotti A.P.
        • Gafni A.
        An economic analysis of management strategies for closed and open grade I tibial shaft fractures.
        Acta Orthop. 2005; 76: 705-712
        • Hak D.J.
        • Fitzpatrick D.
        • Bishop J.A.
        • Marsh J.L.
        • Tilp S.
        • Schnettler R.
        • et al.
        Delayed union and nonunions: epidemiology, clinical issues, and financial aspects.
        Injury. 2014; 45: S3-S7
        • Kanakaris N.K.
        • Giannoudis P.V.
        The health economics of the treatment of long-bone non-unions.
        Injury. 2007; 38: S77-S84
        • Giannoudis P.V.
        • Jones E.
        • Einhorn T.A.
        Fracture healing and bone repair.
        Injury. 2011; 42: 549-550https://doi.org/10.1016/j.injury.2011.03.037
        • Rüedi T.P.
        • Buckley R.
        • Moran C.G.
        AO principles of fracture management.
        Ann R Coll Surg Engl. 2009; 91: 448-449
        • Fayaz H.C.
        • Giannoudis P.V.
        • Vrahas M.S.
        • Smith R.M.
        • Moran C.
        • Pape H.C.
        • et al.
        The role of stem cells in fracture healing and nonunion.
        Int Orthop. 2011; 35: 1587-1597https://doi.org/10.1007/s00264-011-1338-z
        • Smith B.
        • Goldstein T.
        • Ekstein C.
        Biologic adjuvants and bone: current use in orthopedic surgery.
        Curr Rev Musculoskelet Med. 2015; 8: 193-199
        • Calori G.M.
        • Giannoudis P.V.
        Enhancement of fracture healing with the diamond concept: the role of the biological chamber.
        Injury. 2011; 42: 1191-1193https://doi.org/10.1016/j.injury.2011.04.016
        • Santolini E.
        • West R.
        • Giannoudis P.V.
        Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence.
        Injury. 2015; 46: S8-19
        • Simson J.
        • Crist J.
        • Strehin I.
        • Lu Q.
        • Elisseeff J.H.
        An orthopedic tissue adhesive for targeted delivery of intraoperative biologics.
        J Orthop Res. 2013; 31: 392-400
        • Sohn J.J.
        • Gruber T.M.
        • Zahorsky-Reeves J.L.
        • Lawson G.W.
        Comparison of 2-Ethyl-Cyanoacrylate and 2-Butyl-Cyanoacrylate for use on the calvaria of CD1 mice.
        J Am Assoc Lab Anim Sci. 2016; 55: 199-203
        • Hulsart-Billström G.
        • Stelzl C.
        • Procter P.
        • Pujari-Palmer M.
        • Insley G.
        • Engqvist H.
        • et al.
        In vivo safety assessment of a bio-inspired bone adhesive.
        J Mater Sci Mater Med. 2020; 31: 24
        • Brückner T.
        • Meininger M.
        • Groll J.
        • Kübler A.C.
        • Gbureck U.
        Magnesium Phosphate Cement as Mineral Bone Adhesive.
        Materials (Basel). 2019; 12: 3819
        • Schneider O.D.
        • Stepuk A.
        • Mohn D.
        • Luechinger N.A.
        • Feldman K.
        • Stark W.J.
        Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment.
        Acta Biomater. 2010; 6: 2704-2710
        • Hoffmann B.
        • Volkmer E.
        • Kokott A.
        • Augat P.
        • Ohnmacht M.
        • Sedlmayr N.
        • et al.
        Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue.
        J Mater Sci Mater Med. 2009; 20: 2001-2009
        • Jo E.J.
        • Yang H.J.
        • Kim J.H.
        Fixation of fractured inferior orbital wall using fibrin glue in inferior blowout fracture surgery.
        J Craniofac Surg. 2015; 26: e33-e36
        • Jeong H.-.S.
        • Moon M.-.S.
        • Lee H.-.K.
        • Kim K.-.S.
        Use of fibrin glue for open comminuted nasal bone fractures.
        J Craniofac Surg. 2010; 21: 75-78
        • Findikcioglu K.
        • Findikcioglu F.
        • Yavuzer R.
        • Elmas C.
        • Atabay K.
        Effect of platelet-rich plasma and fibrin glue on healing of critical-size calvarial bone defects.
        J Craniofac Surg. 2009; 20: 34-40
        • Jegoux F.
        • Goyenvalle E.
        • D'arc M.B.
        • Aguado E.
        • Daculsi G
        In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant.
        Arch Orthop Trauma Surg. 2005; 125: 153-159
        • Nordberg A.
        • von Holst H.
        • Brolin K.
        • Beckman A.
        Vertebral fractures fixation with composite patch fibre reinforced adhesives.
        Biomed Mater Eng. 2007; 17: 299-308
        • Maurer P.
        • Bekes K.
        • Gernhardt C.R.
        • Schaller H.-.G.
        • Schubert J.
        Tensile bond strength of different adhesive systems between bone and composite compared: an in vitro study.
        J Cranio-Maxillofacial Surg. 2004; 32: 85-89
        • Doganay O.
        • Tugrul M.
        • Olgac V.
        • Atalay B.
        Guided Bone Regeneration Using BioGlue As a Barrier Material With and Without Biphasic Calcium Phosphate.
        J Craniofac Surg. 2019; 30: 1308-1313
        • Bhagat V.
        • O’Brien E.
        • Zhou J.
        • Becker M.L.
        Caddisfly inspired phosphorylated poly (ester urea)-based degradable bone adhesives.
        Biomacromolecules. 2016; 17: 3016-3024
        • Kirillova A.
        • Kelly C.
        • von Windheim N.
        • Gall K.
        Bioinspired mineral–organic Bioresorbable bone adhesive.
        Adv Healthc Mater. 2018; 71800467
        • Winslow B.D.
        • Shao H.
        • Stewart R.J.
        • Tresco P.A.
        Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction.
        Biomaterials. 2010; 31: 9373-9381
        • Trouillas M.
        • Prat M.
        • Doucet C.
        • Ernou I.
        • Laplace-Builhé C.
        • Saint Blancard P.
        A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice.
        Stem Cell Res Ther. 2013; 4: 1
        • Mehrvar C.
        • Kuzyk P.
        • Shamlou J.
        • Safir O.
        • Zalzal P.
        • Alhalawani A.
        • et al.
        Novel adhesives for distal radius fixation: a biomechanical analysis.
        J Mech Behav Biomed Mater. 2019; 89: 99-106
        • Khader B.A.
        • Peel S.A.F.
        • Towler M.R.
        An injectable glass polyalkenoate cement engineered for fracture fixation and stabilization.
        J Funct Biomater. 2017; 8: 25
        • Li W.
        • Zhao Z.
        • Xiong J.
        • Zeng Y.
        The modification experimental study in vivo of nano-bone gelatin. Artif Cells.
        Nanomedicine, Biotechnol. 2014; 42: 309-315
        • Kandalam U.
        • Bouvier A.J.
        • Casas S.B.
        • Smith R.L.
        • Gallego A.M.
        • Rothrock J.K.
        • et al.
        Novel bone adhesives: a comparison of bond strengths in vitro.
        Int J Oral Maxillofac Surg. 2013; 42: 1054-1059
        • Neel E.A.A.
        • Salih V.
        • Revell P.A.
        • Young A.M.
        Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives.
        Acta Biomater. 2012; 8: 313-320
        • Ruiz A.J.O.
        • Vicente A.
        • Alonso F.C.
        • Jornet P.L.
        A new use for self-etching resin adhesives: cementing bone fragments.
        J Dent. 2010; 38: 750-756