Advertisement

Periprosthetic femoral re-fractures pathogenesis, classification, and surgical implications

  • Author Footnotes
    1 Co-first authors.
    Giovanni Vicenti
    Correspondence
    Corresponding author at: School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Piazza Giulio Cesare 11, Bari 70100, Italy.
    Footnotes
    1 Co-first authors.
    Affiliations
    School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy
    Search for articles by this author
  • Author Footnotes
    1 Co-first authors.
    Davide Bizzoca
    Footnotes
    1 Co-first authors.
    Affiliations
    School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy
    Search for articles by this author
  • Giuseppe Solarino
    Affiliations
    School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy
    Search for articles by this author
  • Massimiliano Carrozzo
    Affiliations
    School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy
    Search for articles by this author
  • Alberto Belluati
    Affiliations
    Ospedale “Santa Maria delle Croci”, Ravenna, AUSL Romagna, Italy
    Search for articles by this author
  • Antonio D'Arienzo
    Affiliations
    Ortopedia e Traumatologia 2, AUOP Cisanello, Pisa, Italy
    Search for articles by this author
  • Oronzo De Carolis
    Affiliations
    Orthopaedic and Traumatology Unit, “Di Venere” Hospital, Bari, Italy
    Search for articles by this author
  • Biagio Moretti
    Affiliations
    School of Medicine, University of Bari Aldo Moro, AOU Consorziale “Policlinico”, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy
    Search for articles by this author
  • Author Footnotes
    1 Co-first authors.
Published:November 11, 2020DOI:https://doi.org/10.1016/j.injury.2020.11.030

      Highlights

      • Periprosthetic femoral re-fractures (PFRFs) could be classified into traumatic-PFRFs (T-PFRFs) and pathological-PFRFs (P-PFRFs).
      • T-PFRFs, i.e. the “true” periprosthetic re-fractures, present as new fracture lines occurring proximally or distally to a previous periprosthetic fracture, that has correctly healed.
      • P-PFRFs define re-fractures occurring on a previous periprosthetic non-union or delayed union: the new fracture line appears in the same district of the old one.
      • According to the etiologic factors influencing the P-PFRFs pathogenesis, it is possible to define re-fractures caused by mechanical failures, biological failures, septic failures and multifactorial failures, i.e., a combination of the previously mentioned concerns.

      Abstract

      Periprosthetic femoral re-fractures (PFRFs) represent an emerging challenge for orthopaedic surgeons, since their incidence is growing in the last years, but very few experiences about their management have been currently published. The present study aims to (1) introduce, for the first time, an etiologic classification for PRFRs and (2) to provide surgical and pharmacological tips for the correct management of these injuries.
      Periprosthetic femoral re-fractures (PFRFs) could be classified into traumatic-PFRFs (T-PFRFs) and pathological-PFRFs (P-PFRFs). T-PFRFs, i.e. the “true” periprosthetic re-fractures, present as new fracture lines occurring proximally or distally to a previous periprosthetic fracture, that has correctly healed. They are generally unpredictable injuries but, in selected cases, it is possible to predict them by analyzing the construct used in the treatment of the previous periprosthetic fracture.
      P-PFRFs, on the other hand, define re-fractures occurring on a previous periprosthetic non-union or delayed union: the new fracture line appears in the same district of the old one. According to the etiologic factors influencing the P-PFRFs pathogenesis, it is possible to define re-fractures caused by mechanical failures, biological failures, septic failures and multifactorial failures, i.e., a combination of the previously mentioned concerns.
      A successful postoperative outcome, following the surgical management of PFRFs, requires the correct identification of all the underlying causes, which should be promptly and appropriately managed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Campbell S.T.
        • Lim P.K.
        • Kantor A.H.
        • Gausden E.B.
        • Goodnough L.H.
        • Park A.Y.
        • et al.
        Complication rates after lateral plate fixation of periprosthetic distal femur fractures: a multicenter study.
        Injury. 2020; (0)https://doi.org/10.1016/j.injury.2020.05.009
        • Pavone V.
        • de Cristo C.
        • Di Stefano A.
        • Costarella L.
        • Testa G.
        • Sessa G.
        Periprosthetic femoral fractures after total hip arthroplasty: an algorithm of treatment.
        Injury. 2019; 50https://doi.org/10.1016/J.INJURY.2019.01.044
        • Darrith B.
        • Bohl D.D.
        • Karadsheh M.S.
        • Sporer S.M.
        • Berger R.A.
        • Levine B.R.
        Periprosthetic fractures of the distal femur: is open reduction and internal fixation or distal femoral replacement superior?.
        J Arthroplast. 2020; 35: 1402-1406https://doi.org/10.1016/j.arth.2019.12.033
        • Konan S.
        • Sandiford N.
        • Unno F.
        • Masri B.S.
        • Garbuz D.S.
        • Duncan C.P.
        Periprosthetic fractures associated with total knee arthroplasty an update.
        Bone Jt J. 2016; (98-B): 1489-1496https://doi.org/10.1302/0301-620X.98B11.BJJ-2016-0029.R1
        • Christ A.B.
        • Chawla H.
        • Gausden E.B.
        • Villa J.C.
        • Wellman D.S.
        • Lorich D.G.
        • et al.
        Radiographic and clinical outcomes of periprosthetic distal femur fractures treated with open reduction internal fixation.
        J Orthop Trauma. 2018; 32: 515-520https://doi.org/10.1097/BOT.0000000000001265
        • Zderic A.I.
        • Stoffel K.
        • Sommer C.
        • Dankward H.
        Biomechanical evaluation of the tension band wiring principle. A comparison between two different techniques for transverse patella fracture fixation.
        Injury. 2017; https://doi.org/10.1016/j.injury.2017.05.037
        • Mori C.M.
        • Vicenti G.
        • Carrozzo M.
        • Picca G.
        • Bizzoca D.
        • Leone A.
        • et al.
        The fake unlocked femoral nail: a configuration to avoid in stable pertrochanteric femur fractures.
        Injury. 2018; 49: S32-S36https://doi.org/10.1016/j.injury.2018.09.057
        • Vicenti G.
        • Carrozzo M.
        • Caiaffa V.
        • Abate A.
        • Solarino G.
        • Bizzoca D.
        • et al.
        The impact of the third fragment features on the healing of femoral shaft fractures managed with intramedullary nailing: a radiological study.
        Int Orthop. 2019; 43: 193-200https://doi.org/10.1007/s00264-018-4214-2
        • Randelli F.
        • Pace F.
        • Priano D.
        • Giai Via A.
        • Randelli P.
        Re-fractures after periprosthetic femoral fracture: a difficult to treat growing evidence.
        Injury. 2018; 49: S43-S47https://doi.org/10.1016/j.injury.2018.09.045
        • Schreiner A.J.
        • Gonser C.
        • Ihle C.
        • Zauleck M.K.
        • Klopfer T.
        • Stuby F.
        • et al.
        Adverse events in the treatment of periprosthetic fractures around the knee–a clinical and radiological outcome analysis.
        Z Orthop Unfall. 2018; 156: 287-297https://doi.org/10.1055/s-0043-123831
        • Vicenti G.
        • Bizzoca D.
        • Nappi V.
        • Pesce V.
        • Solarino G.
        • Carrozzo M.
        • et al.
        Serum biomarkers in the diagnosis of periprosthetic joint infection: consolidated evidence and recent developments.
        Eur Rev Med Pharmacol Sci. 2019; 23: 43-50https://doi.org/10.26355/eurrev_201904_17473
        • Vicenti G.
        • Pesce V.
        • Bizzoca D.
        • Nappl V.
        • Palmiotto F.
        • Carrozzo M.
        • et al.
        Perioperative plasmatic presepsin levels in patients undergoing total hip or knee replacement: a preliminary study.
        J Biol Regul Homeost Agents. 2017; 31: 1081-1085
        • Vicenti G.
        • Bizzoca D.
        • Carrozzo M.
        • Nappi V.
        • Rifino F.
        • Solarino G.
        • et al.
        The ideal timing for nail dynamization in femoral shaft delayed union and non-union.
        Int Orthop. 2019; 43: 217-222https://doi.org/10.1007/s00264-018-4129-y
        • Piazzolla A.
        • Solarino G.
        • Bizzoca D.
        • Garofalo N.
        • Dicuonzo F.
        • Setti S.
        • et al.
        Capacitive coupling electric fields in the treatment of vertebral compression fractures.
        J Biol Regul Homeost Agents. 2015; 29: 637-646
        • Solarino G.
        • Vicenti G.
        • Moretti L.
        • Abate A.
        • Spinarelli A.
        • Moretti B.
        Interprosthetic femoral fractures–a challenge of treatment. A systematic review of the literature.
        Injury. 2014; 45: 362-368https://doi.org/10.1016/j.injury.2013.09.028
        • Duncan C.P.
        • Masri B.A.
        Fractures of the femur after hip replacement.
        Instr Course Lect. 1995; 44: 293-304
        • Su E.T.
        • DeWal H.
        • Di Cesare P.E.
        Periprosthetic femoral fractures above total knee replacements.
        J Am Acad Orthop Surg. 2004; 12: 12-20https://doi.org/10.5435/00124635-200401000-00003
        • Rorabeck C.H.
        • Taylor J.W.
        Classification of periprosthetic fractures complicating total knee arthroplasty.
        Orthop Clin North Am. 1999; 30: 209-214https://doi.org/10.1016/S0030-5898(05)70075-4
        • Duncan C.P.
        • Haddad F.S.
        The unified classification system (UCS): improving our understanding of periprosthetic fractures.
        Bone Jt J. 2014; (96-B): 713-716https://doi.org/10.1302/0301-620X.96B6.34040
        • Youssef B.
        • Pavlou G.
        • Shah N.
        • Macheras G.
        • Tsiridis E.
        Impaction bone grafting for periprosthetic fractures around a total hip arthroplasty.
        Injury. 2014; 45: 1674-1680https://doi.org/10.1016/j.injury.2014.07.028
        • Chatziagorou G.
        • Lindahl H.
        • Kärrholm J.
        Lower reoperation rate with locking plates compared with conventional plates in Vancouver type C periprosthetic femoral fractures: a register study of 639 cases in Sweden.
        Injury. 2019; https://doi.org/10.1016/j.injury.2019.10.029
        • Shi J.
        • Liang G.
        • Huang R.
        • Liao L.
        • Qin D.
        Effects of bisphosphonates in preventing periprosthetic bone loss following total hip arthroplasty: a systematic review and meta-analysis.
        J Orthop Surg Res. 2018; 13: 225https://doi.org/10.1186/s13018-018-0918-7
        • Ruchholtz S.
        • Tomás J.
        • Gebhard F.
        • Larsen M.S.
        Periprosthetic fractures around the knee-the best way of treatment.
        Eur Orthop Traumatol. 2013; 4: 93-102https://doi.org/10.1007/s12570-012-0130-x
        • Pletka J.D.
        • Marsland D.
        • Belkoff S.M.
        • Mears S.C.
        • Kates SL.
        Biomechanical comparison of 2 different locking plate fixation methods in Vancouver B1 periprosthetic femur fractures.
        Geriatr Orthop Surg Rehabil. 2011; 2: 51-55https://doi.org/10.1177/2151458510397609
        • Benkovich V.
        • Klassov Y.
        • Mazilis B.
        • Bloom S.
        Periprosthetic fractures of the knee: a comprehensive review.
        Eur J Orthop Surg Traumatol. 2020; 30: 387-399https://doi.org/10.1007/s00590-019-02582-5
        • Moore R.E.
        • Baldwin K.
        • Austin M.S.
        • Mehta S.
        A systematic review of open reduction and internal fixation of periprosthetic femur fractures with or without allograft strut, cerclage, and locked plates.
        J Arthroplast. 2014; 29: 872-876https://doi.org/10.1016/j.arth.2012.12.010
        • Cassidy J.T.
        • Kenny P.
        • Keogh P.
        Failed osteosynthesis of cemented B1 periprosthetic fractures.
        Injury. 2018; 49: 1927-1930https://doi.org/10.1016/j.injury.2018.07.030
        • Zambianchi F.
        • Colombelli A.
        • Digennaro V.
        • Marcovigi A.
        • Mugnai R.
        • Fiacchi F.
        • et al.
        Assessment of patient-specific instrumentation precision through bone resection measurements.
        Knee Surg Sport Traumatol Arthrosc. 2017; 25: 2841-2848https://doi.org/10.1007/s00167-015-3949-1
        • Henderson C.E.
        • Kuhl L.L.
        • Fitzpatrick D.C.
        • Marsh J.L.
        Locking plates for distal femur fractures: is there a problem with fracture healing?.
        J Orthop Trauma. 2011; : 25https://doi.org/10.1097/BOT.0b013e3182070127
        • Wallace S.S.
        • Bechtold D.
        • Sassoon A.
        Periprosthetic fractures of the distal femur after total knee arthroplasty: plate versus nail fixation.
        Orthop Traumatol Surg Res. 2017; 103: 257-262https://doi.org/10.1016/j.otsr.2016.11.018
        • Wallace S.S.
        • Bechtold D.
        • Sassoon A.
        Periprosthetic fractures of the distal femur after total knee arthroplasty: plate versus nail fixation.
        Orthop Traumatol Surg Res. 2017; 103: 257-262https://doi.org/10.1016/j.otsr.2016.11.018
        • Cazzato G.
        • Masci G.
        • Liuzza F.
        • Capasso L.
        • Florio M.
        • Perisano C.
        • et al.
        Secondary femur fracture following treatment with anterograde nailing: the state of the art.
        J Biol Regul Homeost Agents. 2018; 32: 151-155
        • McGraw P.
        • Kumar A.
        Periprosthetic fractures of the femur after total knee arthroplasty.
        J Orthop Traumatol. 2010; 11: 135-141https://doi.org/10.1007/s10195-010-0099-6
        • Chettiar K.
        • Jackson M.P.
        • Brewin J.
        • Dass D.
        • Butler-Manuel P.A.
        Supracondylar periprosthetic femoral fractures following total knee arthroplasty: treatment with a retrograde intramedullary nail.
        Int Orthop. 2009; 33: 981-985https://doi.org/10.1007/s00264-008-0587-y
        • Lee S.S.
        • Lim S.J.
        • Moon Y.W.
        • Seo J.G.
        Outcomes of long retrograde intramedullary nailing for periprosthetic supracondylar femoral fractures following total knee arthroplasty.
        Arch Orthop Trauma Surg. 2014; 134: 47-52https://doi.org/10.1007/s00402-013-1890-7
        • Kolb W.
        • Guhlmann H.
        • Windisch C.
        • Marx F.
        • Koller H.
        • Kolb K.
        Fixation of periprosthetic femur fractures above total knee arthroplasty with the less invasive stabilization system: a midterm follow-up study.
        J Trauma–Inj Infect Crit Care. 2010; 69: 670-676https://doi.org/10.1097/TA.0b013e3181c9ba3b
        • Rollo G.
        • Solarino G.
        • Vicenti G.
        • Picca G.
        • Carrozzo M.
        • Moretti B.
        Subtrochanteric femoral shortening osteotomy combined with cementless total hip replacement for Crowe type IV developmental dysplasia: a retrospective study.
        J Orthop Traumatol. 2017; 18: 407-413https://doi.org/10.1007/s10195-017-0466-7
        • Mills L.
        • Tsang J.
        • Hopper G.
        • Keenan G.
        • Simpson A.
        The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection.
        Bone Jt Res. 2016; 5: 512-519https://doi.org/10.1302/2046-3758.510.BJR-2016-0138
        • Stella M.
        • Santolini E.
        • Sanguineti F.
        • Felli L.
        • Vicenti G.
        • Bizzoca D.
        • et al.
        Aetiology of trauma-related acute compartment syndrome of the leg: a systematic review.
        Injury. 2019; 50: S57-S64https://doi.org/10.1016/j.injury.2019.01.047
        • Giannoudis P.V.
        • Einhorn T.A.
        • Marsh D.
        Fracture healing: the diamond concept.
        Injury. 2007; 38: S3-S6https://doi.org/10.1016/S0020-1383(08)70003-2
        • Zura R.
        • Mehta S.
        • Della Rocca G.J.
        • Steen R.G.
        Biological risk factors for nonunion of bone fracture.
        JBJS Rev. 2016; 4https://doi.org/10.2106/JBJS.RVW.O.00008
        • Zhu L.
        • Zheng W.
        • Zhao F.C.
        • Guo Y.
        • Meng B.Y.
        • Liu H.T.
        • et al.
        A meta-analysis of bisphosphonates for periprosthetic bone loss after total joint arthroplasty.
        J Orthop Sci. 2013; 18: 762-773https://doi.org/10.1007/s00776-013-0411-4
        • MacKenzie S.A.
        • Snowden G.
        • Powell-Bowns M.F.R.
        • Duckworth A.D.
        • Scott C.E.H.
        • Ng R,T.
        Periprosthetic atypical femoral fractures exist and are associated with duration of bisphosphonate therapy.
        Bone Jt J. 2019; 101-B: 1285-1291https://doi.org/10.1302/0301-620X.101B10.BJJ-2019-0599.R2
        • Suzuki T.
        • Sukezaki F.
        • Shibuki T.
        • Toyoshima Y.
        • Nagai T.
        • Inagaki K.
        Teriparatide administration increases periprosthetic bone mineral density after total knee arthroplasty: a prospective study.
        J Arthroplast. 2018; 33: 79-85https://doi.org/10.1016/j.arth.2017.07.026
        • Kaneko T.
        • Otani T.
        • Kono N.
        • Mochizuki Y.
        • Mori T.
        • Nango N.
        • et al.
        Weekly injection of teriparatide for bone ingrowth after cementless total knee arthroplasty.
        J Orthop Surg. 2016; 24: 16-21https://doi.org/10.1177/230949901602400106
        • Kobayashi N.
        • Inaba Y.
        • Uchiyama M.
        • Ike H.
        • Kubota S.
        • Saito T.
        Teriparatide versus alendronate for the preservation of bone mineral density after total hip arthroplasty–a randomized controlled trial.
        J Arthroplast. 2016; 31: 333-338https://doi.org/10.1016/j.arth.2015.07.017
        • Huang T.W.
        • Chuang P.Y.
        • Lin S.J.
        • Lee C.Y.
        • Huang K.C.
        • Shih H.N.
        • et al.
        Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures.
        Medicine. 2016; : 95https://doi.org/10.1097/MD.0000000000003626
        • Shao L.
        • Wu X.D.
        The efficacy of denosumab for prevention of early periprosthetic bone loss after cementless total hip arthroplasty.
        J Bone Miner Res. 2020; 35: 998-999https://doi.org/10.1002/jbmr.3983
        • Murahashi Y.
        • Teramoto A.
        • Jimbo S.
        • Okada Y.
        • Kamiya T.
        • Imamura R.
        • et al.
        Denosumab prevents periprosthetic bone mineral density loss in the tibial metaphysis in total knee arthroplasty.
        Knee. 2020; 27: 580-586https://doi.org/10.1016/j.knee.2019.12.010
        • Adami S.
        • Giannini S.
        • Giorgino R.
        • Isaia G.
        • Maggi S.
        • Sinigaglia L.
        • et al.
        The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study.
        Osteoporos Int. 2003; 14: 198-207https://doi.org/10.1007/s00198-002-1352-5
        • Ribeiro M.
        • Monteiro F.J.
        • Ferraz M.P.
        Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions.
        Biomatter. 2012; 2: 176-194https://doi.org/10.4161/biom.22905
        • Solarino G.
        • Abate A.
        • Vicenti G.
        • Spinarelli A.
        • Piazzolla A.
        • Moretti B.
        Reducing periprosthetic joint infection: what really counts?.
        Joints. 2016; : 3https://doi.org/10.11138/JTS/2015.3.4.208
        • Ting N.T.
        • Della Valle C.J.
        Diagnosis of periprosthetic joint infection—an algorithm-based approach.
        J Arthroplast. 2017; 32: 2047-2050https://doi.org/10.1016/j.arth.2017.02.070
        • Bozic K.J.
        • Kurtz S.M.
        • Lau E.
        • Ong K.
        • Chiu V.
        • Vail T.P.
        • et al.
        The epidemiology of revision total knee arthroplasty in the united states.
        Clin. Orthop. Relat. Res. 2010; 468 (Springer New York LLC): 45-51https://doi.org/10.1007/s11999-009-0945-0
        • Parvizi J.
        • Tan T.L.
        • Goswami K.
        • Higuera C.
        • Della Valle C.
        • Chen A.F.
        • et al.
        The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria.
        J Arthroplast. 2018; 33 (e2): 1309-1314https://doi.org/10.1016/j.arth.2018.02.078
        • Bialecki J.
        • Bucsi L.
        • Fernando N.
        • Foguet P.
        • Guo S.
        • Haddad F.
        • et al.
        Hip and knee section, treatment, one stage exchange: proceedings of international consensus on orthopedic infections.
        J Arthroplast. 2019; 34: S421-S426https://doi.org/10.1016/j.arth.2018.09.026