Advertisement

Assessment of fracture healing in orthopaedic trauma

Published:November 07, 2020DOI:https://doi.org/10.1016/j.injury.2020.11.014

      Highlights

      • Currently, there is still a lack of consensus in the assessment of fracture healing amongst orthopaedic surgeons.
      • Several biomechanical tests, including radiostereometric analysis (RSA), virtual stress testing (VST), vibrational testing, have shown positive results in the assessment of fracture healing.
      • Different research groups have developed smart orthopaedic implants (plates, intramedullary nails and external fixators), able to provide information about the fracture healing process.

      Abstract

      Fracture healing is a complex physiologic process, relying on the crucial interplay between biological and mechanical factors. It is generally assessed using imaging modalities, including conventional radiology, CT, MRI and ultrasound (US), based on the fracture and patient features. Although these techniques are routinely used in orthopaedic clinical practice, unfortunately, they do not provide any information about the biomechanical status of the fracture site.
      Therefore, in recent years, several non-invasive techniques have been proposed to assess bone healing using ultrasonic wave propagation, changes in electrical properties of bones and callus stiffness measurement.
      Moreover, different research groups are currently developing smart orthopaedic implants (plates, intramedullary nails and external fixators), able to provide information about the fracture healing process. These devices could significantly improve orthopaedic and trauma clinical practice in the future and, at the same time, reduce patients’ exposure to X-rays.
      This study aims to define the role of traditional imaging techniques and emerging technologies in the assessment of the fracture healing process.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schlickewei C.W.
        • Kleinertz H.
        • Thiesen D.M.
        • Mader K.
        • Priemel M.
        • Frosch K.H.
        Current and future concepts for the treatment of impaired fracture healing.
        Int J Mol Sci. 2019; : 20https://doi.org/10.3390/ijms20225805
        • Giannoudis P V.
        • Einhorn T.A.
        • Marsh D.
        Fracture healing: the diamond concept.
        Injury. 2007; 38: S3-S6https://doi.org/10.1016/S0020-1383(08)70003-2
        • McKibbin B.
        The biology of fracture healing in long bones.
        J Bone Jt Surg - Ser B. 1978; https://doi.org/10.1302/0301-620x.60b2.350882
        • Kumar G.
        • Narayan B.
        The biology of fracture healing in long bones.
        Class. Pap. Orthop. 2014; https://doi.org/10.1007/978-1-4471-5451-8_139
        • Perren S.M.
        Physical and biological aspects of fracture healing with special reference to internal fixation.
        Clin Orthop Relat Res. 1979;
        • Vicenti G.
        • Bizzoca D.
        • Carrozzo M.
        • Nappi V.
        • Rifino F.
        • Solarino G.
        The ideal timing for nail dynamization in femoral shaft delayed union and non-union.
        Int Orthop. 2019; 43: 217-222https://doi.org/10.1007/s00264-018-4129-y
        • Zura R.
        • Mehta S.
        • Della Rocca G.J.
        • Steen R.G
        Biological risk factors for nonunion of bone fracture.
        JBJS Rev. 2016; 4: 1https://doi.org/10.2106/JBJS.RVW.O.00008
        • Mills L.
        • Tsang J.
        • Hopper G.
        • Keenan G.
        • Simpson A.H.R.W
        The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection.
        Bone Jt Res. 2016; 5: 512-519https://doi.org/10.1302/2046-3758.510.BJR-2016-0138
        • Vicenti G.
        • Antonella A.
        • Filipponi M.
        • Conserva V.
        • Solarino G.
        • Carrozzo M.
        A comparative retrospective study of locking plate fixation versus a dedicated external fixator of 3- and 4-part proximal humerus fractures: results after 5 years.
        Injury. 2019; 50: S80-S88https://doi.org/10.1016/j.injury.2019.01.051
        • Vitale E.
        • Notarnicola A.
        • Tafuri S.
        • Vicenti G.
        • Cassano M.
        • Moretti B
        Orthopedic multidimensional prognostic index (ortho-mpi) in the elderly with hip or neck femur fracture: a pilot study.
        Arch Gerontol Geriatr. 2014; 58: 101-104https://doi.org/10.1016/j.archger.2013.08.006
        • Vicenti G.
        • Bizzoca D.
        • Nappi V.
        • Pesce V.
        • Solarino G.
        • Carrozzo M.
        Serum biomarkers in the diagnosis of periprosthetic joint infection: consolidated evidence and recent developments.
        Eur Rev Med Pharmacol Sci. 2019; 23: 43-50https://doi.org/10.26355/eurrev_201904_17473
        • Vicenti G.
        • Pesce V.
        • Bizzoca D.
        • Nappl V.
        • Palmiotto F.
        • Carrozzo M.
        Perioperative plasmatic presepsin levels in patients undergoing total hip or knee replacement: a preliminary study.
        J Biol Regul Homeost Agents. 2017; 31: 1081-1085
        • Zambianchi F.
        • Colombelli A.
        • Digennaro V.
        • Marcovigi A.
        • Mugnai R.
        • Fiacchi F.
        Assessment of patient-specific instrumentation precision through bone resection measurements. Knee Surgery.
        Sport Traumatol Arthrosc. 2017; 25: 2841-2848https://doi.org/10.1007/s00167-015-3949-1
        • Corina G.
        • Mori C.
        • Vicenti G.
        • Galante V.N.
        • Conserva V.
        • Speciale D.
        Heel displaced intra-articular fractures treated with mini-calcaneal external fixator.
        Injury. 2014; 45: S64-S71https://doi.org/10.1016/j.injury.2014.10.026
        • Rollo G.
        • Vicenti G.
        • Rotini R.
        • Abate A.
        • Colella A.
        • D'Arienzo A.
        Clavicle aseptic nonunion: is there a place for cortical allogenic strut graft?.
        Injury. 2017; 48 (S60–5)https://doi.org/10.1016/S0020-1383(17)30660-5
        • Cazzato G.
        • Masci G.
        • Liuzza F.
        • Capasso L.
        • Florio M.
        • Perisano C.
        Secondary femur fracture following treatment with anterograde nailing: the state of the art.
        J Biol Regul Homeost Agents. 2018;
        • Pantalone A.
        • Vanni D.
        • Guelfi M.
        • Abate M.
        • Belluati A.
        • Salini V
        From plate to nail: a case-report of proximal humerus non-union.
        Injury. 2015; 46 (S48–50)https://doi.org/10.1016/S0020-1383(15)30046-2
      1. Vicenti G., Bizzoca D., Carrozzo M., Solarino G., Moretti B. Multi-omics analysis of synovial fluid: a promising approach in the study of osteoarthritis. J Biol Regul Homeost Agents n.d.;32:9–13.

        • Bhandari M.
        • Guyatt G.H.
        • Swiontkowski M.F.
        • Tornetta P.
        • Sprague S.
        • Schemitsch E.H
        A Lack of Consensus in the Assessment of Fracture Healing Among Orthopaedic Surgeons.
        J Orthop Trauma. 2002; 16: 562-566https://doi.org/10.1097/00005131-200209000-00004
        • Vicenti G.
        • Carrozzo M.
        • Caiaffa V.
        • Abate A.
        • Solarino G.
        • Bizzoca D.
        The impact of the third fragment features on the healing of femoral shaft fractures managed with intramedullary nailing: a radiological study.
        Int Orthop. 2019; 43: 193-200https://doi.org/10.1007/s00264-018-4214-2
        • Solarino G.
        • Vicenti G.
        • Moretti L.
        • Abate A.
        • Spinarelli A.
        • Moretti B
        Interprosthetic femoral fractures - a challenge of treatment.
        A systematic review of the literature. Injury. 2014; 45: 362-368https://doi.org/10.1016/j.injury.2013.09.028
        • Vicenti G.
        • Pesce V.
        • Tartaglia N.
        • Abate A.
        • Mori C.M.
        • Moretti B
        Micromotion in the fracture healing of closed distal metaphyseal tibial fractures: a multicentre prospective study.
        Injury. 2014; 45: S27-S35https://doi.org/10.1016/j.injury.2014.10.019
        • Augat P.
        • Faschingbauer M.
        • Seide K.
        • Tobita K.
        • Callary S.A.
        • Solomon L.B.
        • et al.
        Biomechanical methods for the assessment of fracture repair.
        Injury. 2014; 45https://doi.org/10.1016/j.injury.2014.04.006
        • Lin M.C.
        • Hu D.
        • Marmor M.
        • Herfat S.T.
        • Bahney C.S.
        • Maharbiz M.M
        Smart bone plates can monitor fracture healing.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-018-37784-0
        • Corrales L.A.
        • Morshed S.
        • Bhandari M.
        • Miclau T
        Variability in the assessment of fracture-healing in orthopaedic trauma studies.
        J Bone Jt Surg - Ser A. 2008; 90: 1862-1868https://doi.org/10.2106/JBJS.G.01580
        • Liu J.X.
        • Buza J.A.
        • Leucht P
        Clinical Aspects of Fracture Healing: an Overview.
        Clin Rev Bone Miner Metab. 2015; 13: 208-221https://doi.org/10.1007/s12018-015-9196-7
        • Bhandari M.
        • Fong K.
        • Sprague S.
        • Williams D.
        • Petrisor B
        Variability in the definition and perceived causes of delayed unions and nonunions: a cross-sectional, multinational survey of orthopaedic surgeons.
        J Bone Jt Surg - Ser A. 2012; 94 (e109)https://doi.org/10.2106/JBJS.K.01344
        • Ciaffa V.
        • Vicenti G.
        • Mori C.M.
        • Panella A.
        • Conserva V.
        • Corina G.
        • et al.
        Unlocked versus dynamic and static distal locked femoral nails in stable and unstable intertrochanteric fractures.
        A prospective study. Injury. 2018; 49 (S19–25)https://doi.org/10.1016/j.injury.2018.09.063
        • Caiaffa V.
        • Vicenti G.
        • Mori C.
        • Panella A.
        • Conserva V.
        • Corina G.
        • et al.
        Is distal locking with short intramedullary nails necessary in stable pertrochanteric fractures?.
        A prospective, multicentre, randomised study. Injury. 2016; 47 (S98–106)https://doi.org/10.1016/j.injury.2016.07.038
        • Mori C.M.
        • Vicenti G.
        • Carrozzo M.
        • Picca G.
        • Bizzoca D.
        • Leone A.
        • et al.
        The fake unlocked femoral nail: a configuration to avoid in stable pertrochanteric femur fractures.
        Injury. 2018; 49 (S32–6)https://doi.org/10.1016/j.injury.2018.09.057
        • Carrozzo M.
        • Vicenti G.
        • Pesce V.
        • Solarino G.
        • Rifino F.
        • Spinarelli A.
        • et al.
        Beyond the pillars of the ankle: a prospective randomized CT analysis of syndesmosis’ injuries in Weber B and C type fractures.
        Injury. 2018; 49 (S54–60)https://doi.org/10.1016/j.injury.2018.10.005
        • Panjabi M.M.
        • Walter S.D.
        • Karuda M.
        • White A.A.
        • Lawson J.P
        Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies.
        J Orthop Res. 1985; 3: 212-218https://doi.org/10.1002/jor.1100030211
        • Leow J.M.
        • Clement N.D.
        • Tawonsawatruk T.
        • Simpson C.J.
        • Simpson A.H.R.W
        The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre.
        Bone Jt Res. 2016; 5: 116-121https://doi.org/10.1302/2046-3758.54.2000628
        • Whelan D.B.
        • Bhandari M.
        • McKee M.D.
        • Guyatt G.H.
        • Kreder H.J.
        • Stephen D.
        • et al.
        Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation.
        J Bone Jt Surg - Ser B. 2002; 84: 15-18https://doi.org/10.1302/0301-620X.84B1.11347
        • Hammer R.R.R.
        • Hammerby S.
        • Lindholm B
        Accuracy of radiologic assessment of tibial shaft fracture union in humans.
        Clin Orthop Relat Res. 1985; https://doi.org/10.1097/00003086-198510000-00033
        • McClelland D.
        • Thomas P.B.M.
        • Bancroft G.
        • Moorcroft C.I
        Fracture healing assessment comparing stiffness measurements using radiographs.
        Clin Orthop Relat Res. 2006; (PAP): 214-219https://doi.org/10.1097/BLO.0b013e31802f80a8
        • Field J.R.
        • Ruthenbeck G.R.
        Qualitative and Quantitative Radiological Measures of Fracture Healing.
        Vet Comp Orthop Traumatol. 2018; 31: 1-9https://doi.org/10.3415/VCOT-17-03-0042
        • Lujan T.J.
        • Madey S.M.
        • Fitzpatrick D.C.
        • Byrd G.D.
        • Sanderson J.M.
        • Bottlang M
        A computational technique to measure fracture callus in radiographs.
        J Biomech. 2010; 43: 792-795https://doi.org/10.1016/j.jbiomech.2009.10.013
        • Fisher J.S.
        • Kazam J.J.
        • Fufa D.
        • Bartolotta R.J
        Radiologic evaluation of fracture healing.
        Skeletal Radiol. 2019; 48: 349-361https://doi.org/10.1007/s00256-018-3051-0
      2. Kidoh M., Nakaura T., Nakamura S., Tokuyasu S., Osakabe H., Harada K., et al. Reduction of dental metallic artefacts in CT: value of a newly developed algorithm for metal artefact reduction (O-MAR) 2014. doi:10.1016/j.crad.2013.08.008.

        • Mallinson P.I.
        • Coupal T.M.
        • McLaughlin P.D.
        • Nicolaou S.
        • Munk P.L.
        • Ouellette H.A
        Dual-energy CT for the musculoskeletal system.
        Radiology. 2016; 281: 690-707https://doi.org/10.1148/radiol.2016151109
        • Ha A.S.
        • Lee A.Y.
        • Hippe D.S.
        • Chou S.-.H.S.
        • Chew F.S
        Digital tomosynthesis to evaluate fracture healing: prospective comparison with radiography and CT.
        Am J Roentgenol. 2015; 205: 136-141https://doi.org/10.2214/AJR.14.13833
      3. Piazzolla A., Solarino G., Bizzoca D., Garofalo N., Dicuonzo F., Setti S., et al. Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents n.d.;29:637–46.

        • Wawrzyk M.
        • Sokal J.
        • Andrzejewska E.
        • Przewratil P
        The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children.
        Polish J Radiol. 2015; 80: 473-478https://doi.org/10.12659/PJR.894548
        • Matsuyama J.
        • Ohnishi I.
        • Sakai R.
        • Suzuki H.
        • Harada A.
        • Bessho M.
        • et al.
        A new method for measurement of bone deformation by echo tracking.
        Med Eng Phys. 2006; 28: 588-595https://doi.org/10.1016/j.medengphy.2005.09.005
        • Fellinger M.
        • Leitgeb N.
        • Szyszkowitz R.
        • Peicha G.
        • Passler J.
        • Seggl W.
        • et al.
        Early detection of delayed union in lower leg fractures using a computerised analysis of mechanical vibration reactions of bone for assessing the state of fracture healing.
        Arch Orthop Trauma Surg. 1994; 113: 93-96https://doi.org/10.1007/BF00572913
        • Matsuyama J.
        • Ohnishi I.
        • Sakai R.
        • Bessho M.
        • Matsumoto T.
        • Miyasaka K.
        • et al.
        A New Method for Evaluation of Fracture Healing by Echo Tracking.
        Ultrasound Med Biol. 2008; 34: 775-783https://doi.org/10.1016/j.ultrasmedbio.2007.11.005
        • Bojan A.J.
        • Jönsson A.
        • Granhed H.
        • Ekholm C.
        • Kärrholm J
        Trochanteric fracture-implant motion during healing – A radiostereometry (RSA) study.
        Injury. 2018; 49: 673-679https://doi.org/10.1016/j.injury.2018.01.005
        • Selvik G.
        • Alberius P.
        • Aronson A.S
        A roentgen stereophotogrammetric system. construction, calibration and technical accuracy.
        Acta Radiol - Ser Diagnosis. 1983; 24: 343-352https://doi.org/10.1177/028418518302400412
        • Schwarzenberg P.
        • Darwiche S.
        • Yoon R.S.
        • Dailey H.L
        Imaging Modalities to Assess Fracture Healing.
        Curr Osteoporos Rep. 2020; 18: 169-179https://doi.org/10.1007/s11914-020-00584-5
        • Finnilä S.
        • Moritz N.
        • Strandberg N.
        • Alm J.J.
        • Aro H.T
        Radiostereometric analysis of the initial stability of internally fixed femoral neck fractures under differential loading.
        J Orthop Res. 2019; 37: 239-247https://doi.org/10.1002/jor.24150
        • Chehade M.J.
        • Solomon L.B.
        • Callary S.A.
        • Benveniste S.H.
        • Pohl A.P.
        • Howie D.W
        Differentially loaded radiostereometric analysis to monitor fracture stiffness: a feasibility study.
        Clin Orthop Relat Res. 2009; 467: 1839-1847https://doi.org/10.1007/s11999-009-0708-y
        • Van Embden D.
        • Stollenwerck G.A.N.L.
        • Koster L.A.
        • Kaptein B.L.
        • Nelissen R.G.H.H.
        • Schipper I.B
        The stability of fixation of proximal femoral fractures: a RADIOSTEREOMETRIC ANALYSIS.
        Bone Jt J. 2015; 97-B: 391-397https://doi.org/10.1302/0301-620X.97B3.35077
        • Axelsson P.
        • Strömqvist B.
        Can implant removal restore mobility after fracture of the thoracolumbar segment?: a radiostereometric study.
        Acta Orthop. 2016; 87: 511-515https://doi.org/10.1080/17453674.2016.1197531
        • Hoerig C.
        • Ghaboussi J.
        • Insana M.F
        An information-based machine learning approach to elasticity imaging.
        Biomech Model Mechanobiol. 2017; 16: 805-822https://doi.org/10.1007/s10237-016-0854-6
        • Reddy PD J.N.
        Introduction to the finite element method.
        4th Edition. 2019
        • Orwoll E.S.
        • Marshall L.M.
        • Nielson C.M.
        • Cummings S.R.
        • Lapidus J.
        • Cauley J.A.
        • et al.
        Finite element analysis of the proximal femur and hip fracture risk in older men.
        J Bone Miner Res. 2009; 24: 475-483https://doi.org/10.1359/jbmr.081201
        • Petfield J.L.
        • Hayeck G.T.
        • Kopperdahl D.L.
        • Nesti L.J.
        • Keaveny T.M.
        • Hsu J.R
        Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures.
        J Orthop Res. 2017; 35: 805-811https://doi.org/10.1002/jor.23335
        • Dailey H.L.
        • Schwarzenberg P.
        • Daly C.J.
        • Boran S.A.M.
        • Maher M.M.
        • Harty J.A
        Virtual mechanical testing based on low-dose computed tomography scans for tibial fracture.
        J Bone Jt Surg. 2019; 101: 1193-1202https://doi.org/10.2106/JBJS.18.01139
        • Tower S.S.
        • Beals R.K.
        • Duwelius P.J
        Resonant frequency analysis of the tibia as a measure of fracture healing.
        J Orthop Trauma. 1993; 7: 552-557https://doi.org/10.1097/00005131-199312000-00011
        • Mattei L.
        • Longo A.
        • Di Puccio F.
        • Ciulli E.
        • Marchetti S
        Vibration testing procedures for bone stiffness assessment in fractures treated with external fixation.
        Ann Biomed Eng. 2017; 45: 1111-1121https://doi.org/10.1007/s10439-016-1769-1
        • Mattei L.
        • Di Puccio F
        • Marchetti S
        In vivo impact testing on a lengthened femur with external fixation: a future option for the non-invasive monitoring of fracture healing?.
        J R Soc Interface. 2018; : 15https://doi.org/10.1098/rsif.2018.0068
        • Di Puccio F.
        • Mattei L.
        • Longo A.
        • Marchetti S
        Fracture healing assessment based on impact testing: in vitro simulation and monitoring of the healing process of a tibial fracture with external fixator.
        Int J Appl Mech. 2017; : 9https://doi.org/10.1142/S1758825117500983
        • Mattei L.
        • Di Puccio F.
        • Marchetti S
        Fracture healing monitoring by impact tests: single case study of a fractured tibia with external fixator.
        IEEE J Transl Eng Heal Med. 2019; : 7https://doi.org/10.1109/JTEHM.2019.2901455
      4. AO Research Institute Davos (ARI) Activity Report 2019. Available at: https://www.AofoundationOrg/-/Media/Project/Aocmf/Aof/Documents/Ari-Research-Innovation/about/Ari-Activity-Reports/Ari_activity_report_2019Pdf?La=en&hash=0965C31797EACDF509832A3E97AB9A39F545F4B8 2019.

      5. Focused Registry SmartFix - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT02094209.

      6. Real Life Weight Bearing After Tibial Fractures - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT03166267?term=smartfix&draw=2&rank=2.

        • Chiu W.
        • Vien B.
        • Russ M.
        • Fitzgerald M
        Towards a non-invasive technique for healing assessment of internally fixated femur.
        Sensors. 2019; 19: 857https://doi.org/10.3390/s19040857
        • Borchani W.
        • Aono K.
        • Lajnef N.
        • Chakrabartty S
        Monitoring of postoperative bone healing using smart trauma-fixation device with integrated self-powered piezo-floating-gate sensors.
        IEEE Trans Biomed Eng. 2016; 63: 1463-1472https://doi.org/10.1109/TBME.2015.2496237
        • Wolynski J.G.
        • Sutherland C.J.
        • Demir H.V.
        • Unal E.
        • Alipour A.
        • Puttlitz C.M.
        • et al.
        Utilizing Multiple BioMEMS sensors to monitor orthopaedic strain and predict bone fracture healing.
        J Orthop Res. 2019; 37: 1873-1880https://doi.org/10.1002/jor.24325