Advertisement
Research Article| Volume 50, ISSUE 3, P648-656, March 2019

Medial sustainable nail versus proximal femoral nail antirotation in treating AO/OTA 31-A2.3 fractures: Finite element analysis and biomechanical evaluation

Published:February 12, 2019DOI:https://doi.org/10.1016/j.injury.2019.02.008

      Highlights

      • Individual customization and rapid prototyping technology were used to establish fracture lines.
      • The CT data was selected to detect tiny changes in the study.
      • The medial sustainable nail construct might exhibit better biomechanical performance when compared with PFNA.
      • The medial sustainable nail may be effective and feasible for unstable intertrochanteric fractures.

      Abstract

      Objectives

      Using finite element analysis and biomechanical tests, the biomechanical behaviors of Medial Sustainable Nail (MSN) and Proximal Femoral Nail Antirotation (PFNA) were compared for the fixation of fracture type of AO/OTA 31-A2.3.

      Methods

      Finite element software Abaqus 6.14 was used to conduct axial loading of 2100 N and we analyzed the von Mises stress distribution and the model displacement of two implant models. Biomechanical tests were separately conducted in the axial stiffness test and axial cyclical loading test on a mechanical testing machine.

      Results

      The results indicate that von Mises stress of MSN was lower than that of PFNA, and the model displacement in the MSN group was lower than that in the PFNA group. In the axial stiffness tests, MSN group was stiffer than PFNA construct. With respect to the axial load to ultimate failure, the PFNA construct exhibited higher loads exceeding 4000 N while the MSN construct withstood 3313.8 ± 92.8 N. Specifically, F10mm was 2178.6 ± 133.2 N of the MSN group and 1822.6 ± 93.1 N of the PFNA group (P = 0.001). Additionally, X2100N was 9.8 ± 0.5 mm of the MSN group and 11.7 ± 0.7 mm of the PFNA group (P = 0.002). The MSN group exhibited superior performances in terms of the mean value of the vertical displacement, frontal rotation angle, and lateral rotation angle.

      Conclusions

      The results indicated that the MSN construct might exhibit a better biomechanical performance when compared with that of the PFNA in reducing displacement and anti-varus in fracture type of AO/OTA 31-A2.3.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herman A.
        • Landau Y.
        • Gutman G.
        • Ougortsin V.
        • Chechick A.
        • Shazar N.
        Radiological evaluation of intertrochanteric fracture fixation by the proximal femoral nail.
        Injury. 2012; 43: 856-863
        • Bergström U.
        • Jonsson H.
        • Gustafson Y.
        • Pettersson U.
        • Stenlund H.
        • Svensson O.
        The hip fracture incidence curve is shifting to the right.
        Acta Orthop. 2009; 80: 520-524
        • Weiser L.
        • Ruppel A.
        • Nüchtern J.
        • Sellenschloh K.
        • Zeichen J.
        • Püschel K.
        • Morlock M.
        • Lehmann W.
        Extra- vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail.
        Arch Orthop Trauma Surg. 2015; 135: 1101-1106
        • White S.
        • Griffiths R.
        Projected incidence of proximal femoral fracture in England: a report from the NHS Hip Fracture Anaesthesia Network (HIPFAN).
        Injury. 2011; 42: 1230-1233
        • Kannus P.
        • Parkkari J.
        • Sievanen H.
        • Heinonen A.
        • Vuori I.
        • Jarvinen M.
        Epidemiology of hip fractures.
        Bone. 1996; 18: 57s-63s
        • Parker M.J.
        • Handoll H.H.G.
        Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults.
        Cochrane Database Syst Rev. 2010;
        • Anglen J.O.
        • Weinstein J.N.
        Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database.
        J Bone Joint Surg Am. 2008; 90: 700-707
        • Curtis M.J.
        • Jinnah R.H.
        • Wilson V.
        • Cunningham B.W.
        Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation.
        Injury. 1994; 25: 99-104
        • Liu W.
        • Zhou D.
        • Liu F.
        • Weaver M.J.
        • Vrahas M.S.
        Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails.
        J Trauma Acute Care Surg. 2013; 75: 304-310
        • Seyhan M.
        • Turkmen I.
        • Unay K.
        • Ozkut A.
        Do PFNA devices and Intertan nails both have the same effects in the treatment of trochanteric fractures? A prospective clinical study.
        J Orthop Sci. 2015; 20: 1053-1061
        • Pires R.E.
        • Santana Jr., E.O.
        • Santos L.E.
        • Giordano V.
        • Balbachevsky D.
        • Dos Reis F.B.
        Failure of fixation of trochanteric femur fractures: clinical recommendations for avoiding Z-effect and reverse Z-effect type complications.
        Patient Saf Surg. 2011; 5: 17
        • Lobo-Escolar A.
        • Joven E.
        • Iglesias D.
        • Herrera A.
        Predictive factors for cutting-out in femoral intramedullary nailing.
        Injury. 2010; 41: 1312-1316
        • Sommers M.
        • Roth C.
        • Hall H.
        • Kam B.
        • Ehmke L.
        • Krieg J.
        • Madey S.
        • Bottlang M.
        A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation.
        J Orthop Trauma. 2004; 18: 361-368
        • Apel D.
        • Patwardhan A.
        • Pinzur M.
        • Dobozi W.
        Axial loading studies of unstable intertrochanteric fractures of the femur.
        Clin Orthop Relat Res. 1989; : 156-164
        • Marsh J.L.
        • Slongo T.F.
        • Agel J.
        • Broderick J.S.
        • Creevey W.
        • DeCoster T.A.
        • Prokuski L.
        • Sirkin M.S.
        • Ziran B.
        • Henley B.
        • Audige L.
        Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee.
        J Orthop Trauma. 2007; 21: S1-133
        • Fensky F.
        • Nüchtern J.
        • Kolb J.
        • Huber S.
        • Rupprecht M.
        • Jauch S.
        • Sellenschloh K.
        • Püschel K.
        • Morlock M.
        • Rueger J.
        • Lehmann W.
        Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures--a biomechanical cadaver study.
        Injury. 2013; 44: 802-807
        • Heiner A.
        Structural properties of fourth-generation composite femurs and tibias.
        J Biomech. 2008; 41: 3282-3284
        • Grassi L.
        • Väänänen S.
        • Amin Yavari S.
        • Weinans H.
        • Jurvelin J.
        • Zadpoor A.
        • et al.
        Experimental validation of finite element model for proximal composite femur using optical measurements.
        J Mech Behav Biomed Mater. 2013; 21: 86-94
        • Gardner M.
        • Chong A.
        • Pollock A.
        • Wooley P.
        Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
        Ann Biomed Eng. 2010; 38: 613-620
        • Eberle S.
        • Gerber C.
        • von Oldenburg G.
        • Högel F.
        • Augat P.
        A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests.
        Proc Inst Mech Eng H. 2010; 224: 1141-1152
        • Nüchtern J.
        • Ruecker A.
        • Sellenschloh K.
        • Rupprecht M.
        • Püschel K.
        • Rueger J.
        • Morlock M.
        • Lehmann W.
        Malpositioning of the lag-screws by one- or two-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of Gamma3 and Intertan.
        J Orthop Trauma. 2014;
        • Baumgaertner M.R.
        • Curtin S.L.
        • Lindskog D.M.
        • Keggi J.M.
        The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip.
        J Bone Joint Surg Am. 1995; 77: 1058-1064
        • Hunt S.
        • Martin R.
        • Woolridge B.
        Fatigue testing of a new locking plate for hip fractures.
        J Med Biol Eng. 2012; 32: 117-122
        • Nuchtern J.V.
        • Ruecker A.H.
        • Sellenschloh K.
        • Rupprecht M.
        • Puschel K.
        • Rueger J.M.
        • Morlock M.M.
        • Lehmann W.
        Malpositioning of the lag-screws by one- or two-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of Gamma3 and Intertan.
        J Orthop Trauma. 2014;
        • Knobe M.
        • Gradl G.
        • Maier K.J.
        • Drescher W.
        • Jansen-Troy A.
        • Prescher A.
        • Knechtel T.
        • Antony P.
        • Pape H.C.
        Rotationally stable screw-anchor versus sliding hip screw plate systems in stable trochanteric femur fractures: a biomechanical evaluation.
        J Orthop Trauma. 2013; 27: e127-e136
        • Kubiak E.N.
        • Bong M.
        • Park S.S.
        • Kummer F.
        • Egol K.
        • Koval K.J.
        Intramedullary fixation of unstable intertrochanteric hip fractures: one or two lag screws.
        J Orthop Trauma. 2004; 18: 12-17
        • Konstantinidis L.
        • Papaioannou C.
        • Hirschmuller A.
        • Pavlidis T.
        • Schroeter S.
        • Sudkamp N.P.
        • et al.
        Intramedullary nailing of trochanteric fractures: central or caudal positioning of the load carrier? A biomechanical comparative study on cadaver bones.
        Injury. 2013; 44: 784-790
        • Goffin J.M.
        • Pankaj P.
        • Simpson A.H.
        The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study.
        J Orthop Res. 2013; 31: 596-600
        • Goffin J.
        • Pankaj P.
        • Simpson A.
        • Seil R.
        • Gerich T.
        Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out? A subject-specific computational study.
        Bone Joint Res. 2013; 2: 79-83
        • Goffin J.
        • Pankaj P.
        • Simpson A.
        A computational study on the effect of fracture intrusion distance in three- and four-part trochanteric fractures treated with Gamma nail and sliding hip screw.
        J Orthop Res. 2014; 32: 39-45
        • Hoffmann S.
        • Paetzold R.
        • Stephan D.
        • Puschel K.
        • Buehren V.
        • Augat P.
        Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures.
        J Orthop Trauma. 2013; 27: 483-490
        • Bonnaire F.
        • Lein T.
        • Bula P.
        [Trochanteric femoral fractures: anatomy, biomechanics and choice of implants].
        Unfallchirurg. 2011; 114: 491-500
        • Yuan G.
        • Shen Y.
        • Chen B.
        • Zhang W.
        Biomechanical comparison of internal fixations in osteoporotic intertrochanteric fracture. A finite element analysis.
        Saudi Med J. 2012; 33: 732-739
        • Eberle S.
        • Gabel J.
        • Hungerer S.
        • Hoffmann S.
        • Patzold R.
        • Augat P.
        • et al.
        Auxiliary locking plate improves fracture stability and healing in intertrochanteric fractures fixated by intramedullary nail.
        Clin Biomech (Bristol, Avon). 2012; 27: 1006-1010
        • Kuzyk P.
        • Zdero R.
        • Shah S.
        • Olsen M.
        • Waddell J.
        • Schemitsch E.
        Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis.
        J Orthop Trauma. 2012; 26: 414-421
        • Mahomed N.
        • Harrington I.
        • Kellam J.
        • Maistrelli G.
        • Hearn T.
        • Vroemen J.
        Biomechanical analysis of the gamma nail and sliding hip screw.
        Clin Orthop Relat Res. 1994; : 280-288
        • Heiney J.
        • Battula S.
        • Njus G.
        • Ruble C.
        • Vrabec G.
        Biomechanical comparison of three second-generation reconstruction nails in an unstable subtrochanteric femur fracture model.
        Proc Inst Mech Eng H. 2008; 222: 959-966
        • Haynes R.
        • Pöll R.
        • Miles A.
        • Weston R.
        Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw.
        Injury. 1997; 28: 337-341
        • Knobe M.
        • Nagel P.
        • Maier K.
        • Gradl G.
        • Buecking B.
        • Sönmez T.
        • Modabber A.
        • Prescher A.
        • Pape H.
        Rotationally stable screw-anchor with locked trochanteric stabilizing plate versus proximal femoral nail antirotation in the treatment of AO/OTA 31A2.2 fracture: a biomechanical evaluation.
        J Orthop Trauma. 2016; 30: e12-18
        • Hardy D.
        • Descamps P.
        • Krallis P.
        • Fabeck L.
        • Smets P.
        • Bertens C.
        • et al.
        Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients.
        J Bone Joint Surg Am. 1998; 80: 618-630
        • Takemoto R.C.
        • Lekic N.
        • Schwarzkopf R.
        • Kummer F.J.
        • Egol K.A.
        The effect of two different trochanteric nail lag-screw designs on fixation stability of four-part intertrochanteric fractures: a clinical and biomechanical study.
        J Orthop Sci. 2013;
        • Luo Q.
        • Yuen G.
        • Lau T.W.
        • Yeung K.
        • Leung F.
        A biomechanical study comparing helical blade with screw design for sliding hip fixations of unstable intertrochanteric fractures.
        ScientificWorldJournal. 2013; 2013: 351936
        • Hoffmann S.
        • Paetzold R.
        • Stephan D.
        • Puschel K.
        • Buehren V.
        • Augat P.
        Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures.
        J Orthop Trauma. 2013;
        • Fensky F.
        • Nuchtern J.V.
        • Kolb J.P.
        • Huber S.
        • Rupprecht M.
        • Jauch S.Y.
        • Sellenschloh K.
        • Puschel K.
        • Morlock M.M.
        • Rueger J.M.
        • Lehmann W.
        Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures-A biomechanical cadaver study.
        Injury. 2013; 44: 802-807
        • Rosenblum S.F.
        • Zuckerman J.D.
        • Kummer F.J.
        • Tam B.S.
        A biomechanical evaluation of the Gamma nail.
        J Bone Joint Surg Br. 1992; 74: 352-357