Advertisement

Treatment of distal tibia periarticular bone loss using the Masquelet technique with RIA bone graft

Published:December 03, 2018DOI:https://doi.org/10.1016/j.injury.2018.11.043

      Abstract

      We report on the management of a patient who following a road traffic accident sustained a grade IIIB open fracture of the distal tibia with acute bone loss of the talus and distal tibia.
      The patient was managed with acute bone resection, and the two-stage Masquelet technique.
      He underwent stabilization with a hind-foot nail, application of RIA auto-graft and arthrodesis of the affected joint with a satisfactory functional outcome.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Claude Sagi H.
        • Young M.L.
        • Gerstenfeld L.
        • Einhorn T.A.
        • Tornetta P.
        Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a Reamer/Irrigator/Aspirator) and the iliac crest of the same patient.
        J Bone Joint Surg Am. 2012; 94: 2128-2135https://doi.org/10.2106/JBJS.L.00159
        • Giannoudis P.V.
        • Calori G.M.
        Bone reconstruction using RIA graft: biological considerations and clinical resuls.
        Arch Ortop Reumatol. 2013; 124 (1–3 > 20–21): 20-21https://doi.org/10.1007/s10261-013-0047-0
        • Belthur M.V.
        • Conway J.D.
        • Jindal G.
        • Ranade A.
        • Herzenberg J.E.
        Bone graft harvest using a new intramedullary system.
        Clin Orthop Relat Res. 2008; 466: 2973-2980https://doi.org/10.1007/s1999-008-0538-3
        • Arealisa G.
        • Nikolaou V.S.
        Bone printing: new frontiers in the treatment of bone defects.
        Injury. 2015; 46: S20-2https://doi.org/10.1016/S0020-1383(15)30050-4
        • Campanacci D.A.
        • Puccini S.
        • Caff G.
        • Beltrami G.
        • Piccioli A.
        • Innocenti M.
        • et al.
        Vascularised fibular grafts as a salvage procedure in failed intercalary reconstructions after bone tumour resection of the femur.
        Injury. 2014; 45: 399-404https://doi.org/10.1016/j.injury.2013.10.012
        • Thaller P.H.
        • Fürmetz J.
        • Wolf F.
        • Eilers T.
        • Mutschler W.
        Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)-preliminary results).
        Injury. 2014; 45 (Epub 2013 Oct 28): S60-S65https://doi.org/10.1016/j.injury.2013.10.029
        • Kim P.H.
        • Leopold S.S.
        Gustilo-Anderson classification.
        Clin Orthop Relat Res. 2012; 470: 3270-3274https://doi.org/10.1007/s11999-012-2376-6
        • Togawa S.
        • Yamami N.
        • Nakayama H.
        • Mano Y.
        • Ikegami K.
        • Ozeki S.
        The validity of the mangled extremity severity score in the assessment of upper limb injuries.
        J Bone Joint Surg Br. 2005; 87: 1516-1519https://doi.org/10.1302/0301-620X.87B11.16512
        • D’Arpa S.
        • Toia F.
        • Pirrello R.
        • Moschella F.
        • Cordova A.
        Propeller flaps: a review of indications, technique, and results.
        Biomed Res Int. 2014; 2014986829https://doi.org/10.1155/2014/986829
      1. Stewart S, Bryant SJ, Ahn J, Hankenson KD. Translational regenerative medicine. pp. 313–333: http://doi.org/10.1016/B978-0-12-410396-2.00024-4.

        • Masquelet A.C.
        • Begue T.
        The concept of induced membrane for reconstruction of long bone defects.
        J Orthop Clin N Am. 2010; 41: 27-37https://doi.org/10.1016/j.ocl.2009.07.011
        • Masquele A.C.
        The reconstruction of wide diaphysed bone defect by foreign body induced membrane and bone graft.
        Les e-mémoires de l’Académie Nationale de Chirurgie. 2008; 7: 34-38
        • Karger C.
        • Kishi T.
        • Schneider L.
        • Fitoussi F.
        • Masquelet A.-C.
        Treatment of posttraumatic bone defects by the induced membrane technique.
        Orthop Traumatol Surg Res. 2012; 98: 97-102https://doi.org/10.1016/j.otsr.2011.11.001
        • Masquelet A.C.
        • Fitoussi F.
        • Begue T.
        • Muller G.P.
        Reconstruction of the long bones by the induced membrane and spongy autograft.
        Ann Chir Plast Esthétique. 2000; 45: 346-353
        • Azi M.L.
        • Teixeira A.A.A.
        • Cotias R.B.
        • Joeris A.
        • Kfuri Jr., M.
        Membrane induced osteogenesis in the management of posttraumatic bone defects.
        J Orthop Trauma. 2016; 30: 545-550https://doi.org/10.1097/BOT.0000000000000614
        • Pelissier P.H.
        • Masquelet A.C.
        • Bareille R.
        • Mathoulin Pelissier S.
        • Amedee J.
        Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration.
        J Orthop Res. 2004; 22: 73-79https://doi.org/10.1016/S0736-0266(03)00165-7
        • Mauffrey C.
        • Barlow B.T.
        • Smith W.
        Management of segmental bone defects.
        J Am Acad Orthop Surg. 2015; 23: 143-153https://doi.org/10.5435/JAAOS-D-14-00018