Advertisement

Carbon-Fibre-Reinforced PEEK radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study

      Abstract

      Purpose

      This prospective pilot study investigated the safety and efficacy of a novel radiolucent intramedullary nail (IMN) made of Carbon-Fibre-Reinforced Polyaryl-Ether-Ether-Ketone (CFR-PEEK) for humeral shaft fracture fixation.

      Study Design

      A prospective, single-arm, four-centre study.

      Patients and Methods

      A total of 46 patients with 46 humeral fractures classified as 12 A-B were treated with a novel CFR-PEEK IMN and followed for 12 months.

      Results

      Most of the patients (65%) were female; the mean age was 65 ± 17 years. The average operating time was 66.75 ± 19.84 minutes and X-ray exposure was 104.11 ± 98.01 seconds. All patients postoperatively reported selflimiting shoulder pain and three patients developed iatrogenic transient radial palsy. Two patients required repositioning of the implant. No implant-related complications were observed. Radiological consolidation was achieved in all 43 patients who completed the 12-month follow-up.

      Conclusions

      The CFR-PEEK IMN is user-friendly and safe. Its bone-matching elastic modulus seems to contribute to its clinical efficacy. This, together with compatibility with modern imaging techniques, can be considered a further evolution of IMN designed to stabilise humeral shaft fractures.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rommens P.M.
        • Kuechle R.
        • Bord T.
        • Lewens T.
        • Engelmann R.
        • Blum J.
        Humeral nailing revisited.
        Injury. 2008; 39: 1319-1328
        • Uhthoff H.K.
        • Bardos D.I.
        • Liskova-Kiar M.
        The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. An experimental study in dogs.
        Jxs Bone Joint Surg Br. 1981; 63-B: 427-484
        • Katzer A.
        • Marquardt H.
        • Westendorf J.
        • Wening J.V.
        • von Foerster G.
        Polyetheretherketone – cytotoxicity and mutagenicity in vitro.
        Biomaterials. 2002; 23: 1749-1759
        • Toth J.M.
        • Wang M.
        • Estes B.T.
        • Scifert J.L.
        • Seim 3rd, H.B.
        • Turner A.S.
        Polyetheretherketone as a biomaterial for spinal applications.
        Biomaterials. 2006; 27: 324-334
        • Steinberg E.L.
        • Rath E.
        • Shlaifer A.
        • Chechik O.
        • Maman E.
        • Salai M.
        Carbon fiber reinforced PEEK optima – a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants.
        J Mech Behav Biomed Mater. 2013; 17: 221-228
        • Hak D.J.
        • Mauffrey C.
        • Seligson D.
        • Lindeque B.
        Use of carbon-fiber-reinforced composite implants in orthopedic surgery.
        Orthopedics. 2014; 37: 825-830
        • Schulte M.
        • Schultheiss M.
        • Hartwig E.
        • Wilke H.J.
        • Wolf S.
        • Sokiranski R.
        • et al.
        Vertebral body replacement with a bioglass-polyurethane composite in spine metastases – clinical, radiological and biomechanical results.
        Eur Spine J. 2000; 9: 437-444
        • Xin-ye N.
        • Xiao-bin T.
        • Chang-ran G.
        • Da C.
        The prospect of carbon fiber implants in radiotherapy.
        J Appl Clin Med Phys. 2012; 13: 3821
        • Sha M.
        • Guo Z.
        • Fu J.
        • Li J.
        • Youn C.F.
        • Shi L.
        • Li S.J.
        The effects of nail rigidity on fracture healing in rats with osteoporosis.
        Acta Orthop. 2009; 80: 135-138
        • Utvag S.E.
        • Reikeras O.
        Effects of nail rigidity on fracture healing. Strength and mineralisation in rat femoral bone.
        Arch Orthop Trauma Surg. 1998; 118: 7-13
        • Shields E.
        • Sundem L.
        • Childs S.
        • Maeroli M.
        • Humphrey C.
        • Ketz J.P.
        • et al.
        The impact of residual angulation on patient reported functional outcome scores after non-operative treatment for humeral fractures.
        Injury. 2016; 47: 914-918
        • Lange M.
        • Bradt D.
        • Mittlmeier T.
        • Gradl G.
        Proximal humeral fractures: non-operative treatment versus intramedullary nailing in 2–3–4 part fractures.
        Injury. 2016; 47: S14-S19
        • Wali M.G.
        • Baba A.N.
        • Latoo I.A.
        • Bhat N.A.
        • Baba O.K.
        • Sharma S.
        Internal fixation of shaft humerus fractures by dynamic compression plate or interlocking intramedullary nail: a prospective, randomised study.
        Strategies Trauma Limb Reconstr. 2014; 9: 133-140
        • Bhandari M.
        • Devereaux P.J.
        • McKee M.D.
        • Schemitsch E.H.
        Compression plating versus intramedullary nailing of humeral shaft fractures: a meta-analysis.
        Acta Orthop. 2006; 77: 279-284
        • Baltov A.
        • Mihail R.
        • Dian E.
        Complications after interlocking intramedullary nailing of humeral shaft fractures.
        Injury. 2014; 45: S9-S15
        • Golish S.R.
        • Milhalko W.M.
        Principles of biomechanics and biomaterials in orthopaedic surgery.
        BoneJoint Surg Am. 2011; 93: 207-212
        • Cheung G.
        • Zalzal P.
        • Bhandari M.
        • Spelt J.K.
        • Papini M.
        Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading.
        Med Eng Phys. 2004; 26: 93-108
        • Samiezadeh S.
        • Avval P.T.
        • Fawaz Z.
        • Bougherara H.
        Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study.
        Clin Biomech. 2014; 29: 803-810
        • Buckwalter J.A.
        • Grodzinsky A.J.
        Loading of healing bone, fibrous tissue, and muscle: implications for orthopaedic practice.
        Am Acad Orthop Surg. 1999; 7: 291-299
        • Mow V.C.
        • Huiskes R.
        Basic orthopaedic biomechanics and mechano-biology.
        Lippincot. 3rd. Lippincott Williams & Wilkins, Philadelphia2005
        • Sarmiento A.
        • McKellop H.A.
        • Linas A.
        • Park S.H.
        • Lu B.
        • Stetson W.
        • et al.
        Effect of loading and fracture motions on diaphyseal tibial fractures.
        J Orthop Res. 1996; 14: 80-84
        • Hupel T.M.
        • Weinberg A.J.
        • Aksenov S.A.
        • Schemitsch E.H.
        Effect of unreamed, limited reamed, and standard reamed intramedullary nailing on cortical bone porosity and new bone formation.
        J Ortho Trauma. 2001; 15: 18-27
        • Bucholz R.W.
        • Ross S.E.
        • Lawrence K.L.
        Fatigue fracture of the interlocking nail in the treatment of fractures of the distal part of the femoral shaft.
        J Bone Joint Surg Am. 1987; 69: 1391-1399
        • Collis P.N.
        • Clegg T.R.
        • Seligson D.
        The invisible nail: a technique report of treatment of a pathological humerus fracture with a radiolucent intramedullary nail.
        Injury. 2011; 42: 424-426