Advertisement

Preliminary experience with Piccolo Composite™, a radiolucent distal fibula plate, in ankle fractures

Published:October 28, 2014DOI:https://doi.org/10.1016/j.injury.2014.10.020

      Abstract

      The radiolucent plate has many advantageous properties in the treatment of complex ankle fractures, particularly trimalleolar fractures. Surgeons may sometimes have difficulty observing the posterior malleolus after synthesis of lateral malleolus with a traditional plate because common materials of conventional plates are not radiolucent. In this study, the authors highlight the importance of the radiolucent property in the treatment of ankle fractures and describe their preliminary experience with a carbon fibre-reinforced polyetheretherketone distal fibula plate, with good results at 4 months’ follow-up and no signs of tissue inflammatory reaction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Court-Brown C.M.
        • Caesar B.
        Epidemiology of adult fractures: a review.
        Injury. 2006; 37: 691-697
        • Hong C.C.
        • Roy S.P.
        • Nashi N.
        • Tan K.J.
        Functional outcome and limitation of sporting activities after bimalleolar and trimalleolar ankle fractures.
        Foot Ankle Int. 2013; 34: 805-810
        • Hay-David A.G.
        • Clint S.A.
        • Brown R.R.
        The impact of the major trauma network: will trauma units continue to treat complex foot and ankle injuries?.
        Injury. 2014; (pii: S0020-1383(14)00324-6 [Epub ahead of print])https://doi.org/10.1016/j.injury.2014.07.005
        • Morris N.
        • Lovell M.E.
        Demographics of 3929 ankle injuries, seasonal variation in diagnosis and more fractures are diagnosed in winter.
        Injury. 2013; 44: 998-1001https://doi.org/10.1016/j.injury.2013.01.030
        • Rammelt S.
        • Zwipp H.
        • Mittlmeier T.
        Operative treatment of pronation fracture – dislocations of the ankle.
        Oper Orthop Traumatol. 2013; 25 (quiz 291–293): 273-291
        • Zaghloul A.
        • Haddad B.
        • Barksfield R.
        • Davis B.
        Early complications of surgery in operative treatment of ankle fractures in those over 60: a review of 186 cases.
        Injury. 2014; 45: 780-783https://doi.org/10.1016/j.injury.2013.11.008
        • Valderrabano V.
        • Horisberger M.
        • Russell I.
        • Dougall H.
        • Hintermann B.
        Etiology of ankle osteoarthritis.
        Clin Orthop Relat Res. 2009; 467: 1800-1806
        • Stufkens S.A.
        • Knupp M.
        • Horisberger M.
        • Lampert C.
        • Hintermann B.
        Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study.
        J Bone Joint Surg Am. 2010; 92: 279-286
        • Black E.M.
        • Antoci V.
        • Lee J.T.
        • Weaver M.J.
        • Johnson A.H.
        • Susarla S.M.
        • et al.
        Role of preoperative computed tomography scans in operative planning for malleolar ankle fractures.
        Foot Ankle Int. 2013; 34: 697-704
      1. Carbon Fiber Reinforced Plastics – Properties. Comprehensive Composite Materials. Volume 2: Polymer Matrix Composites.
        2000: 107-150
        • Kurtz S.
        • Devine J.
        PEEK biomaterials in trauma, orthopedic, and spinal implants.
        Biomaterials. 2007; 28: 4845-4869
        • Fujihara K.
        • Huang Z.M.
        • Ramakrishna S.
        • Satknanantham K.
        • Hamada H.
        Performance study of braided carbon/PEEK composite compression bone plates.
        Biomaterials. 2003; 24: 2661-2667
        • Tayton K.
        • Johnson-Nurse C.
        • McKibbin B.
        • Bradley J.
        • Hastings G.
        The use of semi-rigid carbon-fibre-reinforced plastic plates for fixation of human fractures. Results of preliminary trials.
        J Bone Joint Surg Br. 1982; 64: 105-111
        • Steinberg E.L.
        • Rath E.
        • Shlaifer A.
        • Chechik O.
        • Maman E.
        • Salai M.
        Carbon fiber reinforced PEEK optima – a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants.
        J Mech Behav Biomed Mater. 2013; 17: 221-228
        • Williams D.
        Polyetheretherketone for long-term implantable devices.
        Med Device Technol. 2008; 19: 8-11
        • Haraguchi N.
        • Haruyama H.
        • Toga H.
        • Kato F.
        Pathoanatomy of posterior malleolar fractures of the ankle.
        J Bone Joint Surg Am. 2006; 88: 1085-1092
        • Zhao Y.
        • Wong H.M.
        • Wang W.
        • Li P.
        • Xu Z.
        • Chong E.Y.
        • et al.
        Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone.
        Biomaterials. 2013; 34: 9264-9277
        • Khonsari R.
        • Berthier P.
        • Rouillon T.
        • Perrin J.P.
        • Corre P.
        Severe infectious complications after PEEK-derived implant placement: report of three cases.
        Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 2013; ([in press])