Advertisement
Research Article| Volume 42, ISSUE 10, P1135-1143, October 2011

Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome?

      Abstract

      Fractures of the calcaneus are often associated with serious permanent disability, a considerable reduction in quality of life, and high socio-economic cost. Although some studies have already reported changes in plantar pressure distribution after calcaneal fracture, no investigation has yet focused on the patient‘s strength and postural control.

      Method

      60 patients with unilateral, operatively treated, intra-articular calcaneal fractures were clinically and biomechanically evaluated >1 year postoperatively (physical examination, SF-36, AOFAS score, lower leg isokinetic strength, postural control and gait analysis including plantar pressure distribution). Results were correlated to clinical outcome and preoperative radiological findings (Böhler angle, Zwipp and Sanders Score).

      Results

      Clinical examination revealed a statistically significant reduction in range of motion at the tibiotalar and the subtalar joint on the affected side. Additionally, there was a statistically significant reduction of plantar flexor peak torque of the injured compared to the uninjured limb (p < 0.001) as well as a reduction in postural control that was also more pronounced on the initially injured side (standing duration 4.2 ± 2.9 s vs. 7.6 ± 2.1 s, p < 0.05). Plantar pressure measurements revealed a statistically significant pressure reduction at the hindfoot (p = 0.0007) and a pressure increase at the midfoot (p = 0.0001) and beneath the lateral forefoot (p = 0.037) of the injured foot.
      There was only a weak correlation between radiological classifications and clinical outcome but a moderate correlation between strength differences and the clinical questionnaires (CC 0.27–0.4) as well as between standing duration and the clinical questionnaires. Although thigh circumference was also reduced on the injured side, there was no important relationship between changes in lower leg circumference and strength suggesting that measurement of leg circumference may not be a valid assessment of maximum strength deficits. Self-selected walking speed was the parameter that showed the best correlation with clinical outcome (AOFAS score).

      Conclusion

      Calcaneal fractures are associated with a significant reduction in ankle joint ROM, plantar flexion strength and postural control. These impairments seem to be highly relevant to the patients. Restoration of muscular strength and proprioception should therefore be aggressively addressed in the rehabilitation process after these fractures.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allmacher D.H.
        • Galles K.S.
        • Marsh J.L.
        Intra-articular calcaneal fractures treated nonoperatively and followed sequentially for 2 decades.
        J Orthop Trauma. 2006; 20: 464-469
        • Arand M.
        • Schwamborn M.
        • Schilling U.
        • et al.
        Ergebnisse nach Osteosynthese intraartikulärer Kalkaneusfrakturen mit der “low contact”.
        Platte Zentralbl Chir. 2004; : 129
        • Arangio G.A.
        • Chen C.
        • Kalady M.
        • Reed 3rd., J.F.
        Thigh muscle size and strength after anterior cruciate ligament reconstruction and rehabilitation.
        J Orthop Sports Phys Ther. 1997; 26: 238-243
        • Basile A.
        Operative versus nonoperative treatment of displaced intra-articular calcaneal fractures in elderly patients.
        Foot Ankle Surg. 2010; 49: 25-32
        • Bruhn S.
        • Gollhofer A.
        • Lohrer H.
        Funtionelle Stabilität am Kniegelenk, Verletzungs- und trainingsbedingte Unterschiede.
        Sportorthop Sporttraumatol. 2000; 16: 145-154
        • Bruhn S.
        • Kullmann N.
        • Gollhofer A.
        The effects of a sensorimotor training and a strength training on postural stabilisation, maximum isometric contraction and jump performance.
        Int J Sports Med. 2004; 25: 56
      1. Bullinger M, Kirchberger I. SF-36-Fragebogen zum Gesundheitszustand: Handanweisung. Göttingen; Bern; Toronto; Seattle. Hogrefe, Verl. für Psychologie; 1998.

        • Bullinger M.
        • Kirchberger I.
        • Ware J.
        Der deutsche SF-36 Health Survey. Übersetzung und psychometrische Testung eines krankheitsübergreifenden Instrumentes zur Erfassung der gesundheitsbezogenen Lebensqualität.
        Z Gesundheitswiss. 1995; 3: 21-36
        • Bus S.A.
        • de Lange A.
        A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot.
        Clin Biomech (Bristol, Avon). 2005; 20: 892-899
        • Carroll T.J.
        • Herbert R.D.
        • Munn J.
        • et al.
        Contralateral effects of unilateral strength training: evidence and possible mechanisms.
        J Appl Physiol. 2006; 101: 1514-1522
        • Copes W.S.
        • Champion H.R.
        • Sacco W.J.
        • et al.
        The injury severity score revisited.
        J Trauma. 1988; 28: 69-77
        • Davies M.B.
        • Betts R.P.
        • Scott I.R.
        Optical plantar pressure analysis following internal fixation for displaced intra-articular os calcis fractures.
        Foot Ankle Int. 2003; 24: 851-856
        • Deschenes M.R.
        • Giles J.A.
        • McCoy R.W.
        • et al.
        Neural factors account for strength decrements observed after short-term muscle unloading.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R578-R583
        • Duchateau J.
        Bed rest induces neural and contractile adaptations in triceps surae.
        Med Sci Sports Exerc. 1995; 27: 1581-1589
        • Dudkiewicz I.
        • Levi R.
        • Blankstein A.
        • et al.
        Dynamic footprints: adjuvant method for postoperative assessment of patients after calcaneal fractures.
        Isr Med Assoc J. 2002; 4: 349-352
        • Fox J.
        • Docherty C.L.
        • Schrader J.
        • Applegate T.
        Eccentric plantar–flexor torque deficits in participants with functional ankle instability.
        J Athletic Train. 2008; 43: 51-54
        • Fugl-Meyer A.R.
        • Gustafsson L.
        • Burstedt Y.
        Isokinetic and static plantar flexion characteristics.
        Eur J Appl Physiol. 1980; 45: 221
        • Häggmark T.
        • Eriksson E.
        Hypotrophy of the soleus muscle in man after achilles tendon rupture. Discussion of findings obtaines by CT and morphologic studies.
        Am J Sports Med. 1979; 7: 121-126
        • Hirschmueller A.
        • Baur H.
        • Grau S.
        • et al.
        Effectiveness of therapeutic measures on ankle joint peak torque and subjective pain in runners with Achilles tendinitis.
        Med Sci Sports Exerc. 2002; 34: S100
        • Hortobagyi T.
        Cross education and the human central nervous system.
        Eng Med Biol Mag IEEE. 2005; 24: 22-28
        • Hubbard T.J.
        • Kramer L.C.
        • Denegar C.R.
        • Hertel J.
        Contributing factors to chronic ankle instability.
        Foot Ankle Int. 2007; 28: 343-354
        • Hughes J.
        • Pratt L.
        • Linge K.
        • et al.
        Reliability of pressure measurements: the EM ED F system.
        Clin Biomech. 1991; 6: 14-18
        • Ibrahim T.
        • Rowsell M.
        • Rennie W.
        • et al.
        Displaced intra-articular calcaneal fractures: 15-Year follow-up of a randomised controlled trial of conservative versus operative treatment.
        Injury. 2007; 38: 848
        • Kinner B.J.
        • Best R.
        • Falk K.
        • Thon K.P.
        Is there a reliable outcome measurement for displaced intra-articular calcaneal fractures?.
        J Trauma. 2002; 53 (discussion 102): 1094-1101
        • Kitaoka H.B.
        • Alexander I.J.
        • Adelaar R.S.
        • et al.
        Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes.
        Foot Ankle Int. 1994; 15: 349-353
        • LeBlanc A.
        • Rowe R.
        • Schneider V.
        • et al.
        Regional muscle loss after short duration spaceflight.
        Aviat Space Environ Med. 1995; 66: 1151-1154
        • Makki D.
        • Alnajjar H.M.
        • Walkay S.
        • et al.
        Osteosynthesis of displaced intra-articular fractures of the calcaneum: a long-term review of 47 cases.
        J Bone Joint Surg Br. 2010; 92: 693-700
        • McKnight C.
        • Armstrong C.W.
        The role of ankle strength in functional ankle instability.
        J Sport Rehabil. 1997; 6: 21-29
        • McPoil T.G.
        • Cornwall M.W.
        • Dupuis L.
        • Cornwell M.
        Variability of plantar pressure data. A comparison of the two-step and midgait methods.
        J Am Podiatr Med Assoc. 1999; 89: 495-501
        • Meeder P.J.
        • Weller S.
        • Hansis M.
        • Weise K.
        Fracture of the calcaneus—sequelae, therapy and expert assessment.
        Unfallchirurg. 1988; 91: 516-522
        • Mitternacht J.
        • Lampe R.
        Calculation of functional kinetic parameters from the plantar pressure distribution measurement.
        Z Orthop Ihre Grenzgeb. 2006; 144: 410-418
        • Mittlmeier T.
        • Morlock M.M.
        • Hertlein H.
        • et al.
        Analysis of morphology and gait function after intraarticular calcaneal fracture.
        J Orthop Trauma. 1993; 7: 303-310
        • Morfeld M.
        • Bullinger M.
        • Nantke J.
        • Brahler E.
        The version 2.0 of the SF-36 Health Survey: results of a population-representative study.
        Soz Praventivmed. 2005; 50: 292-300
        • Müller O.
        • Günther M.
        • Krauss I.
        • Horstmann T.
        Physical characterization of the therapeutic device Posturomed as a measuring device—presentation of a procedure to characterize balancing ability.
        Biomed Tech. 2004; 49: 56-60
        • Müller S.
        • Baur H.
        • König T.
        • et al.
        Reproducibility of isokinetic single- and multi-joint strength measurements in healthy and injured athletes.
        Isokinet Exerc Sci. 2007; 15: 295
        • Öberg B.
        • Bergman T.
        • Tropp H.
        Testing of isokinetic muscle strength in the ankle.
        Med Sci Sports Exerc. 1987; 19: 318-322
        • Rosenbaum D.
        • Bauer G.
        • Augat P.
        • Claes L.
        Calcaneal fractures cause a lateral load shift in Chopart joint contact stress and plantar pressure pattern in vitro.
        J Biomech. 1996; 29: 1435-1443
        • Rosenbaum D.
        • Bauer G.
        • Lubke B.
        • Claes L.
        Functional deficits of the foot after calcaneus fracture.
        Sportverletz Sportschaden. 1996; 10: 32-37
        • Rosenbaum D.
        • Lubke B.
        • Bauer G.
        • Claes L.
        Long-term effects of hindfoot fractures evaluated by means of plantar pressure analyses.
        Clin Biomech (Bristol, Avon). 1995; 10: 345-351
        • Sauseng S.
        • Kastenbauer T.
        Effect of limited joint mobility on plantar pressure in patients with type 1 diabetes mellitus.
        Acta Med Austriaca. 1999; 26: 178-181
        • Schepers T.
        • Schipper I.B.
        • Vogels L.M.
        • et al.
        Percutaneous treatment of displaced intra-articular calcaneal fractures.
        J Orthop Sci. 2007; 12: 22-27
      2. Schrader JW. Concentric and eccentric muscle function in normal and chronically sprained ankles: prevention implications; 1993.

        • Schuh A.
        • Hausel M.
        Die Schwierigkeiten in der Beurteilung von Nachuntersuchungsergebnissen bei plattenosteosynthetisch versorgter Kalkaneusfraktur—Gibt es einen praktikablen Score?.
        Unfallchirurg. 2000; : 295-300
        • Siegmeth A.
        • Petje G.
        • Mittlmeier T.
        • Vecsei V.
        Gait analysis after intra-articular calcaneus fractures.
        Unfallchirurg. 1996; 99: 52-58
        • Stevens J.E.
        • Walter G.A.
        • Okereke E.
        • et al.
        Muscle adaptations with immobilization and rehabilitation after ankle fracture.
        Med Sci Sports Exerc. 2004; 36: 1695-1701
        • Termansen N.B.
        • Hansen H.
        • Damholt V.
        Radiological and muscular status following injury to the lateral ligaments of the ankle. Follow-up of 144 patients treated conservatively.
        Acta Orthopaed Scand. 1979; 50: 705-708
        • van Tetering E.A.
        • Buckley R.E.
        Functional outcome (SF-36) of patients with displaced calcaneal fractures compared to SF-36 normative data.
        Foot Ankle Int. 2004; 25: 733-738
        • Vandenborne K.
        • Elliott M.A.
        • Walter G.A.
        • et al.
        Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation.
        Muscle Nerve. 1998; 21: 1006-1012
        • Vandervoort A.A.
        Aging of the human neuromuscular system.
        Muscle Nerve. 2002; 25: 17-25
        • Westphal T.
        • Halm J.P.
        • Piatek S.
        • et al.
        Quality of life after calcaneal fractures. A matched-pairs trial with a standardised German control group.
        Unfallchirurg. 2003; 106: 313-318
        • Westphal T.
        • Piatek S.
        • Halm J.P.
        • et al.
        Outcome of surgically treated intraarticular calcaneus fractures—SF-36 compared with AOFAS and MFS.
        Acta Orthop Scand. 2004; 75: 750-755
        • Westphal T.
        • Piatek S.
        • Schubert S.
        • et al.
        Quality of life after foot injuries.
        Zentralbl Chir. 2002; 127: 238-242
        • Zwipp H.
        • Rammelt S.
        • Barthel S.
        Fersenbeinbruch—häufigster Bruch der tarsalen Knochen.
        Ther Umschau. 2004; 61: 435-450
        • Zwipp H.
        • Rammelt S.
        • Gavlik J.M.
        • Grass R.
        Fersenbeinbruch—Bringt die Osteosynthese Vorteile?.
        Trauma Berufskr. 2000; 2: S129