Advertisement
Research Article| Volume 33, ISSUE 9, P807-813, November 2002

Computer simulation of forearm rotation in angular deformities: a new therapeutic approach

      Abstract

      A new computer-assisted simulation of forearm rotation based on orthogonal radiographs of the forearm is introduced. A new computer program called STOOPS was developed based on a new kinematic model describing motion of the radius and ulna in regards to forearm rotation. The computer program allows simulation of angular deformities of the forearm and can predict subsequent rotational impairment. To validate the program, the authors compared the actual pronation of 21 patients with angular deformities with the predicted pronation by STOOPS. The mean difference between the simulated and clinically measured pronation was 5.6° (S.D. 9.4°). There was no statistically significant difference between the measured and simulated values.
      Using the computer-assisted simulation may help predict impairment of pronation due to angular deformities. If clinical impairment differs from the computed one, other causes such as lesions to the interosseous membrane or the adjacent joints have to be excluded. If values are similar, correction of the angular deformities should result in improvement of forearm pronation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bade H.
        • Strickling H.
        • Rutt J.
        Restriction of movement in the proximal and distal radio-ulnar joints in post-traumatic angulation and torsion of the radius.
        Aktuelle Traumatol. 1991; 21: 274-278
      1. Blackburn N, Ziv I, Rang M. Correction of the malunited forearm fracture. Clin. Orthop. 1984;54–7.

        • Buch J.
        • Leixnering M.
        • Hintringer W.
        • Poigenfurst J.
        Intramedullary nailing of unstable forearm shaft fractures in children.
        Unfallchirurgie. 1991; 17: 253-258
        • Carey P.J.
        • Alburger P.D.
        • Betz R.R.
        • Clancy M.
        • Steel H.H.
        Both-bone forearm fractures in children.
        Orthopedics. 1992; 15: 1015-1019
      2. Creasman C, Zaleske DJ, Ehrlich MG. Analyzing forearm fractures in children. The more subtle signs of impending problems, Clin. Orthop. 1984;40–53.

      3. Fick R. Handbuch der Anatomie und der Mechanik der Gelenke. Fischer Verlag: Jena, Germany, 1904.

        • Forgon M.
        • Mammel E.
        Our corrective osteotomy for radius fractures healed in defective position at the typical spot.
        Unfallchirurgie. 1983; 9: 318-324
        • Fuller D.J.
        • McCullough C.J.
        Malunited fractures of the forearm in children.
        J. Bone Joint Surg. Br. 1982; 64: 364-367
        • Hagert C.G.
        Distal radius fracture and the distal radioulnar joint-anatomical considerations.
        Handchir. Mikrochir. Plast-Chir. 1994; 26: 22-26
        • Hahn M.P.
        • Richter D.
        • Ostermann P.A.
        • Muhr G.
        Elastic intramedullary nailing—a concept for treatment of unstable forearm fractures in childhood.
        Chirurg. 1996; 67: 409-412
        • Holmenschlager F.
        • Winckler S.
        • Brug E.
        Intramedullary nailing in forearm shaft fractures—an 18 year retrospective study of a patient sample.
        Zentralbl. Chir. 1997; 122: 1002-1009
        • Jackson W.T.
        • Hefzy M.S.
        • Guo H.
        Determination of wrist kinematics using a magnetic tracking devise.
        Med. Eng. Phys. 1994; 16: 123-133
      4. Kapandji IA. Obere Extremität. Enke Verlag: Stuttgart, Germany, 1999.

      5. Kerle H FM. Zur Kinematik eines biomechanischen Modells für den menschlichen Unterarm. Proc. Getriebetechnik: Warnemünde, 1997, p. 115–22.

        • Kramhoft M.
        • Solgaard S.
        Displaced diaphyseal forearm fractures in children: classification and evaluation of the early radiographic prognosis.
        J. Pediatr. Orthop. 1989; 9: 586-589
        • Luhmann S.J.
        • Gordon J.E.
        • Schoenecker P.L.
        Intramedullary fixation of unstable both-bone forearm fractures in children.
        J. Pediatr. Orthop. 1998; 18: 451-456
        • Murray W.M.
        • Delp S.L.
        • Buchanan T.S.
        Variation of muscle moment arms with elbow and forearm position.
        J. Biomech. 1995; 28: 513-525
        • Nakamura T.
        • Yabe Y.
        • Horiuchi Y.
        • Yamazaki N.
        In vivo motion analysis of forearm rotation utilizing magnetic resonance imaging.
        Clin. Biomech. (Bristol, Avon). 1999; 14: 315-320
        • Nilsson B.E.
        • Obrant K.
        The range of motion following fracture of the shaft of the forearm in children.
        Acta Orthop. Scand. 1977; 48: 600-602
        • Oskam J.
        • Kingma J.
        • Klasen H.J.
        Fracture of the distal forearm: epidemiological developments in the period 1971–1995.
        Injury. 1998; 29: 353-355
        • Ostermann P.A.
        • Richter D.
        • Mecklenburg K.
        • Ekkernkamp A.
        • Muhr G.
        • Hahn M.P.
        Pediatric forearm fractures: indications, technique, and limits of conservative management.
        Unfallchirurg. 1999; 102: 784-790
        • Price C.T.
        • Scott D.S.
        • Kurzner M.E.
        • Flynn J.C.
        Malunited forearm fractures in children.
        J. Pediatr. Orthop. 1990; 10: 705-712
      6. Pugh DM, Galpin RD, Carey TP. Intramedullary Steinmann pin fixation of forearm fractures in children, long-term results, Clin. Orthop. 2000;376:39–48.

        • Qidwai S.A.
        Treatment of diaphyseal forearm fractures in children by intramedullary Kirschner wires.
        J. Trauma. 2001; 50: 303-307
        • Richter D.
        • Ostermann P.A.
        • Ekkernkamp A.
        • Muhr G.
        • Hahn M.P.
        Elastic intramedullary nailing: a minimally invasive concept in the treatment of unstable forearm fractures in children.
        J. Pediatr. Orthop. 1998; 18: 457-461
        • Robbin M.L.
        • An K.N.
        • Linscheid R.L.
        • Ritman E.L.
        Anatomic and kinematic analysis of the human forearm using high-speed computed tomography.
        Med. Biol. Eng. Comput. 1986; 24: 164-168
        • Sarmiento A.
        • Ebramzadeh E.
        • Brys D.
        • Tarr R.
        Angular deformities and forearm function.
        J. Orthop. Res. 1992; 10: 121-133
        • Sarmiento A.
        • Latta L.L.
        • Zych G.
        • McKeever P.
        • Zagorski J.P.
        Isolated ulnar shaft fractures treated with functional braces.
        J. Orthop. Trauma. 1998; 12: 420-423
        • Scharli A.F.
        • Winiker H.
        Shaft fractures in infancy.
        Z. Unfallchir. Versicherungsmed. Berufskr. 1989; 82: 216-226
      7. Schärli AF. Operative Therapie diaphysärer Unterarmfrakturen. In: Hofmann V, Kapp-Herr S, editor. Die Frakturen an Unterarm und Hand im Kindesalter. Wiesbaden: Universum Verlag; 1995. p. 25–30.

        • Shoemaker S.D.
        • Comstock C.P.
        • Mubarak S.J.
        • Wenger D.R.
        • Chambers H.G.
        Intramedullary Kirschner wire fixation of open or unstable forearm fractures in children.
        J. Pediatr. Orthop. 1999; 19: 329-337
      8. Slongo T. Operative Therapieverfahren am Unterarm und Handskelett. In: Hofmann V, Kapp-Herr S, editor. Die Frakturen an Unterarm und Hand im Kindesalter. Wiesbaden: Universum Verlag; 1995. p. 31–9.

        • Tarr R.R.
        • Garfinkel A.I.
        • Sarmiento A.
        The effects of angular and rotational deformities of both bones of the forearm. An in vitro study.
        J. Bone Joint Surg. Am. 1984; 66: 65-70
        • Weinberg A.M.
        • Pietsch I.T.
        • Helm M.B.
        • Hesselbach J.
        • Tscherne H.
        A new kinematic model of pronation and supination of the human forearm.
        J. Biomech. 2000; 33: 487-491
        • Weinberg A.M.
        • Pietsch I.T.
        • Krefft M.
        • Pape H.C.
        • van Griensven M.
        • Helm M.B.
        • et al.
        Pronation and supination of the forearm. With special reference to the humeronationulnar articulation.
        Unfallchirurg. 2001; 104: 404-409
        • Werner F.W.
        • Palmer A.K.
        • Fortino M.D.
        • Short W.H.
        Force transmission through the distal ulna: effect of ulnar variance, lunate fossa angulation, and radial and palmar tilt of the distal radius.
        J. Hand Surg. Am. 1992; 17: 423-428
        • Wurfel A.M.
        • Voigt A.
        • Linke F.
        • Hofmann V.K.
        New aspects in the treatment of complete and isolated diaphyseal fracture of the forearm in childhood.
        Unfallchirurgie. 1995; 21: 70-76
        • Youm Y.
        • Dryer R.F.
        • Thambyrajah K.
        • Flatt A.E.
        • Sprague B.L.
        Biomechanical analyses of forearm pronation-supination and elbow flexion-extension.
        J. Biomech. 1979; 12: 245-255
        • Yung S.H.
        • Lam C.Y.
        • Choi K.Y.
        • Ng K.W.
        • Maffulli N.
        • Cheng J.C.
        Percutaneous intramedullary kirschner wiring for displaced diaphyseal forearm fractures in children.
        J. Bone Joint Surg. Br. 1998; 80: 91-94