Advertisement
Research Article| Volume 31, SUPPLEMENT 4, D37-D47, December 2000

Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Calcium phosphate (CaP) compounds are becoming of increasingly great importance in the fiel of biomaterials and, in particular, as bone substitutes. Recent discoveries have accelerated this process, but have simultaneously rendered the field more complicated for the everyday user. Subtle differences in composition and structure of CaP compounds may have a profound effect on their in vivo behaviour. Therefore, the main goal of this article is to provide a simple, but comprehensive presentation of CaP compounds. Reference is made to the most important commercial products.

      Zusammenfassung

      Calciumphosphatverbindungen (CaP-Verbindungen) werden im Anwendungsgebiet von Biomaterialien und speziell als Knochenersatzmaterialien zunehmend wichtig. Neuere Erkenntnisse haben dazu beschleunigend beigetragen, gleichzeitig aber die Verständlichkeit der fachlichen Aspekte für den Nichtexperten wesentlich erschwert. Kleinste Unterschiede in der Zusammensetzung oder Struktur dieser CaP-Verbindungen können ihr in vivo Verhalten entscheidend beeinflussen. Das Hauptziel des vorliegenden Artikels ist deshalb, eine einfache aber dennoch umfassende Darstellung der CaP-Verbindungen zu vermitteln. Zudem wird eine Reihe von Hinweisen betreffend der wichtigsten kommerziellen. Produkte gegeben.

      Résumé

      Les composés phosphocalciques sont utilisés de plus en plus dans le domaine des biomatériaux, particulièrement comme os de substitution. Cette tendance s'est accentuée avec des découvertes récentes, de telle sorte que le domaine des ciments est devenu particulièrement complexe pour l'usager. Des différences subtiles de composition et de structure des composés phosphocalciques peuvent avoir un effect considérable sur leur comportement in vivo. L'objectif de cet article est de présenter une mise au point claire et simple de l'ensemble des composés phosphocalciques. La discussion porte sur les principaux produits commerciaux.

      Resumen

      Los compuestos de fosfato de calcio (CaP) están cobrando cada vez más importancia en el campo de los biomateriales y, en particular, como sustitutos óseos. Recientes descubrimientnos han acelerado este proceso, pero a la vez han complicado este campo para la rutina diaria de sus usuarios. Sutiles diferencias de composición y estructura de los compuestos de CaP pueden tener un profundo efecto sobre su comportamiento in vivo. El principal objetivo de este artículo es, pues, ofrecer una presentación sencilla pero exhaustiva de los compuestos de CaP. Se hace referencia a los productos comerciales más importantes.

      Keywords

      Schlüsselwörter

      Mots-clé

      Palabras Clave

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Albee F
        • Morrison H
        Studies in bone growth.
        Annals of Surg. 1920; 71: 32-38
        • Haldeman K
        • Moore J
        Influence of a local excess of calcium and phosphorus on the healing of fractures.
        Arch. Surg. 1934; 29: 385-396
        • Ray R
        • Degge J
        • Gloyd P
        • Mooney G
        Bone regeneration.
        J. Bone Joint Surg. 1952; 34A: 638-647
        • Getter L
        • Bhaskar S
        • Cutright D
        • Perez B
        • Brady J
        • Driskell T
        • O'Hara M
        Three biodegradable calcium phosphate slurry implants in bone.
        J. Oral Surg. 1972; 30: 263-268
        • Kïsker K
        • Karbe E
        • Kramer H
        • Heide H
        • König R
        Experimenteller Knochenersatz durch resorbierbare Calciumphosphat-Keramik.
        Langenbecks Arch. Chir. 1976; 341: 77-86
        • Peelen J
        • Rejda B
        • Vermeiden J
        • de Groot K
        Sintered tricalcium phosphate as bioceramic.
        Science of Ceramics. 1977; 9: 226-236
        • Jarcho M
        • Kay J
        • Gumaer K
        • Doremus R
        • Drobeck H
        Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface.
        J Bioengineering. 1977; 1: 79-92
        • Roy D
        • Linnehan S
        Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange.
        Nature. 1974; 247: 220-222
        • Denissen H
        Dental root implants of apatite ceramics. Experimental investigations and clinical use of dental root implants made of apatite ceramics.
        Ph.D. Thesis. Vrije Universiteit te Amsterdam, 1979
      1. Brown W, Chow L. Dental restorative cement pastes, US Patent No. 4518430, 1985.

      2. Van Wazer J Phosphorus and its compounds. Wiley, New York1958
      3. Kanazawa T Inorganic phosphate materials, Materials science monographs. Kodansha, Tokyo1989: 52
        • Elliott J
        Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam1994
        • Driessens F
        • Verbeeck R
        Relation between physico-chemical solubility and biodegradability of calcium phosphates.
        in: de Putter C de Lange GL de Groot K Lee AJC Implant materials in biofunction. Advances in Biomaterials. Elsevier, Amsterdam1988: 105-111
        • Vereecke G
        • Lemaître J
        Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O.
        J Crystal Growth. 1990; 104: 820-832
        • Driessens F
        Is the solubility product of synthetic calcium phosphates a good predicator for their biodegradability?.
        in: de Width G Terpstra R Euro-Ceramics, 1st ECERS, Metselaar. 3. Elsevier, Amsterdam1989: 48-52
        • Groot K
        Degradable ceramics.
        in: Williams DF Biocompatibility of clinical implant materials. 1. CRC Press, Boca Raton, Florida, USA1981: 199-222
        • LeGeros R
        • LeGeros J
        Phosphate minerals in human tissues.
        in: Nriagu JO Moore PB Phosphate Minerals. Springer, Berlin1984: 351-385
        • Constanz B
        • Ison I
        • Fulmer M
        • et al.
        Skeletal repair by in situ formation of the mineral phase of bone.
        Science. 1995; 267: 1796-1799
        • Lemaître J
        • Mirtchi A
        • Mortier A
        Calcium phosphate cements for medical use: state of the art and perspectives of development.
        Silicates Industriels. 1987; 9–10: 141-146
        • Lenárt G
        • Bidló G
        • Pintér J
        Some basic problems in the examination of the calcium hydrogen phosphates of bone.
        Clin. Orthop Rel. 1972; 83: 263-272
        • Muenzenberg K
        • Gebhardt M
        Brushite, octocalcium phosphate, and carbonate-containing apatite in bone.
        Clin Orthop Rel. 1973; 90: 271-273
        • Martin R
        • Brown P
        Phase equilibria among acid calcium phosphates.
        J. Am. Ceram. Soc. 1997; 80: 1263-1266
        • Bohner M
        • Merkle H
        • Lemaître J
        In vitro ageing of a calcium phosphate cement.
        J. Mater. Sci. Mater. Med. 2000; 11: 155-162
        • Costantino P
        • Friedman C
        • Jones K
        • Chow L
        • Pelzer H
        • Sisson G
        Hydroxyapatite cement. I. Basic chemistry and histological properties.
        Arch. Otolaryngol Head Neck Surg. 1991; 117: 379-384
        • Friedman C
        • Costantino P
        • Jones K
        • Chow L
        • Pelzer H
        • Sisson G
        Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus.
        Arch. Otolaryngol Head Neck Surg. 1991; 117: 385-389
        • Khairoun I
        • Driessens F
        • Boltong M
        • Planell J
        • Wenz R
        Addition of cohesion promotors to calcium phosphate cements.
        Biomaterials. 1999; 20: 393-398
        • Wernes P
        • Bergert J
        • Smith L
        Crystalluria. J. Crystal Growth. 1981; 53: 166-181
        • Thomas J
        • Thomas E
        • Fompeydie D
        • et al.
        Lithiase urinaire de brushite. Particularités cliniques, biologiques, radiologiques, évolutives et thérapeutiques.
        J. Urologie. 1995; 101: 139-152
        • de Groot K
        Degradable ceramics.
        in: Williams DF Biocompatibility of tissue analogs. CRC Press, Boca Raton, Florida, USA1985: 199-222
        • Francis M
        • Webb N
        Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor.
        Calcified Tissue Research. 1972; 10: 82-90
        • Constanz B
        • Barr B
        • Ison I
        • et al.
        Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites.
        J. Biomed. Mater. Res. (Appl Biomater). 1998; 43: 451-461
        • Munting E
        • Mirtchi A
        • Lemaître J
        Bone repair of defects filled with a phosphocalcic hydraulic cement: an in vivo study.
        J. Mater Sci. Mater. Med. 1993; 4: 337-344
        • Brown W
        • Smith J
        • Lehr J
        • Frazier A
        Octocalcium phosphate and hydroxyapatite: crystalloraphic and chemical relations between octocalcium phosphate and hydroxyapatite.
        Nature. 1962; 196: 1050-1055
        • Brown P
        • Martin R
        An analysis of hydroxyapatite surface layer formation.
        J. Phys. Chem. B. 1999; 103: 1671-1675
        • Driessens F
        • Verbeek R
        Biominerals. CRC Press, Boca Raton, Florida, USA1990
        • Mortier A
        • Lemaître J
        • Rodrique L
        • Rouxhet P
        Synthesis and thermal behavior of well-crystallized calcium-deficient phosphate apatite.
        J. Solid State Chem. 1989; 78: 215-219
        • Mortier A
        • Lemaître J
        • Rouxhet P
        Temperature-programmed characterization o synthetic calcium-deficient phosphate apatites.
        Thermochimica Acta. 1989; 13: 265-282
        • Driessens F
        • Planell J
        • Boltong M
        • Khairoun I
        • Ginebra M
        Osteotransductive bone cements.
        Proc. Instn Mech Eng. 1998; 212 (part H): 427-435
        • Driessens F
        • DeMayer E
        • Fernandez E
        • et al.
        Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite.
        Bioceramics. 1996; 9: 231-234
      4. L'association pour l'étude des greffes et substituts tissulaires en orthopédie.
        Les substituts osseux en 1999. 1999; (Monography)
        • Bénard J
        Combinaisons avec le phosphore.
        in: Bénard E Bouissières G Brusset H Nouveau traité de chimie minérale. 4. Masson, Paris1958: 455-488
      5. Eggli P, Müller W, Schenk R. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin. Orthop. 19;232:127-138.

        • Welch J
        • Gutt W
        High-temperature studies of the system calcium oxide-phosphorus pentoxide.
        J. Chem. Soc. 1961; : 4442-4444
        • Monma H
        • Goto M
        Behavior of the α-β phase transformation in tricalcium phosphate.
        Yohyo-Kyokia-Shi. 1983; 91: 473-475
        • Nicolet M
        Review of the preparation methods for calcium phosphate bioceramics. Paul Scherrer Institut, Switzerland1991 (Internal report)
        • Riboud P
        Composition et stabilité des phases à structure d'apatite dans le systeme CaO-P2O5-oxyde de fer-H2O à haute température.
        Ann. Chim. 1973; 8: 31-390
        • Trombe J
        • Montel G
        Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice-II.
        J. Inorg Nucl. Chem. 1978; 40: 23-26
        • Ciesla K
        • Rudnicki R
        Synthesis and transformation of tetracalcium phosphate in solid state. Part I. Synthesis of roentgenographically pure tetracalcium phosphate from calcium dibasic phosphate and calcite.
        Polish J. Chem. 1987; 61: 719-727
        • Driessens F
        • Planell J
        • Gil F
        • Schwartz ER
        Calcium phosphate bone cements.
        in: Wise DL Trantolo DJ Altobelli DE Yaszemski MJ Cresser JD Encyclopedic handbook of biomaterials and bioengineering. 2. Marcel Dekker, New York1995 (Part B)
        • Lemaître J
        Ciments hydrauliques phospho-calciques: developpements recents et applications potentielles.
        Inn. Tech. Biol. Med. 1995; 16: 109-120
        • Miyamoto Y
        • Ishikawa K
        • Takechi M
        • et al.
        Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing.
        J. Biomed. Mater. Res. Appl. Biomater. 1999; 48: 36-42
        • Andrianjatovo H
        • Lemaître J
        Effets des polysaccharides sur les propriétés de ciments de phosphate monocalcique/phosphate tricalcique b..
        Innov. Tech. Biol. Med. 1995; 16: 140-147
        • Ishikawa K
        • Miyamoto Y
        • Kon M
        • Nagayama M
        • Asaoka K
        Non-decay type fast-setting calcium phosphate cement: composition with sodium alginate.
        Biomaterials. 1995; 16: 527-532
        • Eppley B
        Development and clinical results of synthetic calcium phosphate materials in craniomaxillofacial surgery.
        Concepts and clinical applications of ionic cements. Arcachon, FranceSept. 8, 1999
        • Friedman C
        • Costantino P
        • Takagi S
        • Chow L
        BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.
        J. Biomed. Mater. Res (Appl.Biomater.). 1998; 43: 428-432
        • Thordarson D
        • Hedman T
        • Yetkinler D
        • Eskander E
        • Lawrence T
        • Poser R
        Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement.
        J. Bone Joint Sur. 1999; 81-A: 239-246
        • Stankewich C
        • Swiontkowski M
        • Tencer A
        • Yetkinler D
        • Poser R
        Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone material cement.
        J. Orthopaedic Res. 1996; 14: 786-793
        • Goodman S
        • Bauer T
        • Carter D
        • et al.
        Norian SRS cement augmentation in hip fracture treatment.
        Clin. Orthop. Rel. Res. 1998; 348: 42-50
        • Bai B
        • Jazrawi L
        • Kummer F
        • Spivak J
        The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures.
        Spine. 1999; 24: 1521-1526
        • Frankenburg E
        • Goldstein S
        • Bauer T
        • Harris S
        • Poser R
        Biomechanical and histological evaluation of a calcium phosphate cement.
        J. Bone Joint Surg. 1998; 80-A: 1112-1124
        • Moore D
        • Maitra R
        • Farjo L
        • Graziano G
        • Goldstein S
        Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement.
        Spine. 1997; 22: 1696-1705
        • Mermelstein L
        • McLain R
        • Yerbi S
        Reinforcement of thoracolumbar burst fractures with calcium phosphate cement.
        Spine. 1998; 23: 664-671
        • Mermelstein L
        • Chow L
        • Friedman C
        • Crisco J
        The reinforcement of cancellous bone screws with calcium phosphate cement.
        J. Orthop. Trauma. 1996; 10: 15-20
        • Lacout J
        • Mejdoubi E
        • Hamad M
        Crystallization mechanisms of calcium phosphate cement for biological uses.
        J. Mater Sci. Mater Med. 1996; 7: 371-374
        • Driessens F
        Chemistry and applied aspects of calcium phosphate bone cements.
        Concepts and clinical applications of ionic cements. Arcachon, France1999 (Sept. 8)
      6. Pittet C, Lemaître J, Chevalley F. Mechanical characterization of brushite cements - A Mohr circles approach. J. Biomed. Mater. Res. (submitted).

        • Miyamoto Y
        • Ishikawa K
        • Fukao H
        • et al.
        In vivo setting behaviour of fast-setting calcium phosphate cement.
        Biomaterials. 1995; 16: 855-860
        • Ikenaga M
        • Hardouin P
        • Lemaître J
        • Andrianjatovo H
        • Flautre B
        Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics.
        J. Biomed. Mater. Res. 1998; 40: 139-144
        • Young S
        • Holde M
        • Gunasekaran S
        • Poser R
        • Constantz B
        The correlation of radiographic, MRI, and histological evaluations over two years of a carbonate apatite cement in a rabbit model.
        in: Proceedings of the 44th Annual Meeting. Orthopaedic Research Society, New Orleans, USAMarch 16–19, 1998: 846
        • Bohner M
        • Lemaître J
        • Ring T
        Hydraulic properties of tricalcium phosphate - phosphoric acid - water mixtures.
        in: Duran P Fernandez JF Third Euro-Ceramics. Castellon de la Plana. Faenza Editrice Iberica S.L, Spain1993
        • Bajpai P
        • Fuchs C
        • McCullum D
        Development of tricalcium phosphate ceramic cement.
        in: Lemons J Quantitative characterization and performance of porous implants for hard tissue applications, ASTM STP 953. American Society for Testing and Materials, Philadelphia1987: 377-388
        • Bohner M
        • Van Landuyt P
        • Merkel H
        • Lemaître J
        Composition effects on the pH of a hydraulic calcium phosphate cement.
        J. Mater Sci. Mater. Med. 1997; 8: 675-681
        • Bohner M
        Propriétés physico-chimiques et ostéogéniques d'un biociment hydraulique à base de phosphates de calcium.
        PhD Thesis No. 1171. Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne1993
        • Bohner M
        • Van Landuyt P
        • Trophardy G
        • Merkle H
        • Lemaître J
        Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement.
        J. Mater. Sci. Mater. Med. 2000; 11: 111-116
        • Andrianjatovo H
        • José F
        • Lemaître J
        Effect of b-TCP granulometry on setting time and strength of calcium phosphate hydraulic cements.
        J. Mater. Sci. Mater. Med. 1996; 7: 34-39
        • Ishikawa K
        • Takagi S
        • Chow L
        • Ishikawa Y
        • Eanes E
        • Asaoka K
        Behavior of a calcium phosphate cement in simulated blood plasma in vitro.
        Dent Mater. 1994; 10: 26-32
        • Hardouin P
        • Delecourt C
        • Blary M
        • Van Landuyt P
        • Lemaître J
        • Hardouin P
        Volume effect on biological properties of a calcium phosphate hydraulic cement: experimental study in sheep.
        Bone. 1992; 25: 35-39
        • von Rechenberg B
        • Auer J
        • Matter S
        • Bohner M
        Internal report. Mathys AG, CH-2544 Bettlach2000
        • Bohner M
        • Matter S
        Brushite hydraulic cement stabilized with a magnesium salt. 1999; (PCT application PCT/CH99/00595, Switzerland)
        • Ohura K
        • Bohner M
        • Hardouin P
        • Lemaître J
        • Pasquier G
        • Flautre B
        Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: an in vivo study.
        J. Biomed. Mater. Res. 1996; 30: 193-200
        • Ikenaga M
        • Ohura K
        • Lemaître J
        • et al.
        Calcium phosphate cement as a substitute for bone defects.
        Innov. Tech. Biol. Med. 1995; 16: 133-139
        • Chow L
        Calcium phosphate materials: reactor response.
        Adv. Dent. Res. 1988; 2: 181-184
        • Bohner M
        • Gasser B
        • Mathys R
        Calcium phosphate emulsions.
        Proceedings of the 6th Word Biomaterials Congress. 2000; (Hawaii, USA)
        • Otsuka M
        • Matsuda Y
        • Suwa Y
        • Fox J
        • Higuchi W
        Novel skeletal drug-delivery system using self-setting calcium phosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin.
        J. Pharm. Sci. 1994; 83: 255-258
        • Yu D
        • Wong J
        • Matsuda Y
        • Fox J
        • Higuchi W
        • Otsuka M
        Self-setting hydroxyapatite cement: a novel skeletal drug-delivery system for antibiotics.
        J. Pharm. Sci. 1992; 81: 529-531
        • Bohner M
        • Lemaître J
        • Van Landuyt P
        • Zambelli P
        • Merkle H
        • Gander B
        Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system.
        J. Pharm. Sci. 1997; 86: 565-572
        • Otsuka M
        • Matsuda Y
        • Suwa Y
        • Fox J
        • Higuchi W
        A novel skeletal drug delivery system using a self-setting calcium phosphate cement. 5. Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug.
        J. Pharm. Sci. 1994; 83: 1565-1568
        • Otsuka M
        • Matsuda Y
        • Suwa Y
        • Fox J
        • Higuchi W
        A novel skeletal drug delivery system using a self-setting calcium phosphate cement. 2. Physicochemical properties and drug release rate of the cement-containing indomethacin.
        J. Pharm. Sci. 1994; 83: 611-615
        • Kamegai A
        • Shimamura N
        • Naitou K
        • Nagahara K
        • Kanematsu N
        • Mori M
        Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as delivery system.
        Bio-Med. Mater. Eng. 1994; 4: 291-307
        • Medjoubi E
        • Lacout J
        • Hamad M
        Preparation of calcium phosphate bioceramics by moulding and sintering.
        Bioceramics. 1995; 8: 457-460
        • Galley O
        • Michaud P
        • Medjoubi E
        • Lacout J
        • Rodriguez F
        Calcium phosphate cement for root canal filling.
        in: Vicenzini P Materials in clinical applications. 1995: 51-58
        • Kurashina
        • Kurita H
        • Hirano M
        • Kotani A
        • Klein C
        • de Groot K
        In vivo study of calcium phosphate cements: implantation of an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste.
        Biomaterials. 1997; 18: 539-543