Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction


      The reconstruction of the anterio-posterior inclination of the medial aspect of the orbital floor, despite a wide 360° exposure, including coronal and conjunctival incisions, is a challenging task in severe injuries of the orbit with massive comminution and complete displacement of the medial orbital wall and orbital floor.
      Out of a total of 20 patients with orbital fractures, five underwent a surgical intervention of repositioning the medial aspect of the orbital floor and especially the transition area between the orbital floor and medial orbital wall, using navigation-aided procedures. Using the mirroring tool of the Stryker–Leibinger STN-system, post-operative CTs indicated an average difference of the globe position of −4.9% between the operated side and the unaffected side, depending on the position of the medial aspect of the orbital floor. Navigation-aided procedures proved to be an essential precondition for achieving precise and predictable results in orbital reconstruction.
      In such cases, unlike those with an intact medial orbital wall remnant as a surgical target, bone grafts for reconstruction of the orbital floor cannot be implanted as onlay grafts.


      To read this article in full you will need to make a payment


      Subscribe to Injury
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Eufinger H.
        • Wittkampf A.R.
        • Wehmoller M.
        • Zonneveld F.W.
        Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery.
        J. Craniomaxillofac. Surg. 1998; 26: 373-378
        • Gellrich N.-C.
        Controversies and current status of therapy of optic nerve damage in craniofacial traumatology and surgery.
        Mund Kiefer Gesichtschir. 1999; 3: 176-194
        • Gruss J.S.
        Naso-ethmoid-orbital fractures: classification and role of primary bone-grafting.
        Plast. Reconstr. Surg. 1985; 75: 303-317
        • Hammer B.
        • Prein J.
        Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients.
        J. Craniomaxillofac. Surg. 1995; 23: 81-90
        • Haßfeld S.
        • Mühling J.
        • Zöller J.
        Intraoperative navigation in oral and maxillofacial surgery.
        Int. J. Oral Maxillofac. Surg. 1995; 24: 111-119
        • Heissler E.
        • Fischer F.
        • Bolouri S.
        • et al.
        Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects.
        Int. J. Oral Maxillofac. Surg. 1998; 27: 334-338
        • Hoffmann J.
        • Cornelius C.P.
        • Groten M.
        • et al.
        Orbital reconstruction with individually copy-milled ceramic implants.
        Plast. Reconstr. Surg. 1998; 101: 604-612
        • Holck D.E.
        • Boyd Jr., E.M.
        • Mauffray R.O.
        Benefits of sterelithography in orbital reconstruction.
        Ophthalmology. 1999; 106: 1214-1218
        • Howard G.
        • Osguthorpe J.D.
        Concepts in orbital reconstruction.
        Otolaryngol. Clin. North Am. 1997; 30: 541-562
        • Ilankovan V.
        • Jackson I.T.
        Experience in the use of calvarial bone grafts in orbital reconstruction.
        Br. J. Oral Maxillofac. Surg. 1992; 30: 92-96
        • Kawamoto Jr., H.K.
        Late posttraumatic enophthalmos: a correctable deformity?.
        Plast. Reconstr. Surg. 1982; 69: 423-432
        • Luka B.
        • Brechtelsbauer D.
        • Gellrich N.-C.
        • König M.
        2-D and 3-D reconstructions of the facial skeleton: an unnecessary option or a diagnostic pearl?.
        Int. J. Oral Maxillofac. Surg. 1995; 21: 99-103
        • Manson P.N.
        • Grivas A.
        • Rosenbaum A.
        • et al.
        Studies on enophthalmos: II. The measurement of orbital injuries and their treatment by quantitative computed tomography.
        Plast. Reconstr. Surg. 1985; 77: 203-214
        • Manson P.N.
        • Ruas E.J.
        • Iliff N.T.
        Deep orbital reconstruction for correction of post-traumatic enophthalmos.
        Clin. Plast. Surg. 1987; 14: 113-121
        • Marin P.C.
        • Love T.
        • Carpenter R.
        • et al.
        Complications of orbital reconstruction: misplacement of bone grafts within the intramuscular cone.
        Plast. Reconstr. Surg. 1998; 101: 1323-1327
        • Marmulla R.
        • Niederdellmann H.
        Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma.
        J. Craniomaxillofac. Surg. 1998; 26: 68-69
        • Perry M.
        • Banks P.
        • Richards R.
        • et al.
        The use of computer-generated three-dimensional models in orbital reconstruction.
        Br. J. Oral Maxillofac. Surg. 1998; 36: 275-284
        • Schmelzeisen R.
        • Husstedt H.
        • Zumkeller M.
        • Rittierodt M.
        Profilerhalt und verbesserung bei primärer und sekundärer Orbitarekonstruktion.
        Mund Kiefer Gesichtschir. 1997; 1: 87-89
        • Schramm A.
        • Gellrich N.-C.
        • Naumann S.
        • et al.
        Non-invasive referencing in computer assisted surgery.
        Med. Biol. Eng. Comput. 1999; 4: 644-645
        • Schramm A.
        • Gellrich N-C.
        • Schimming R.
        • Schmelzeisen R.
        Rechnergestützte Insertion von Zygomaticus-Implantaten (Brånemark System®) nach ablativer Tumorchirurgie.
        Mund Kiefer Gesichtschir. 2000; 4: 292-295
        • Watzinger F.
        • Wanschitz F.
        • Wagner A.
        • et al.
        Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma.
        J. Craniomaxillofac. Surg. 1997; 25: 198-202
        • Wirtz C.R.
        • Knauth M.
        • Haßfeld S.
        • et al.
        Neuronavigation—first experiences with three different commercially available systems.
        Zentralbl. Neurochir. 1998; 59: 14-22
      1. Zizelmann C, Gellrich N-C, Schramm A, et al. Minimal invasive computer-assisted reconstruction of orbital floor based on cone beam tomography. Plast Reconstr Surg, submitted for publication.